
Project Report

Manas Chaudhari

July 28, 2012

Contents

1 Experiments with Covariance Tracking 2
1.1 Calculation of Variance Ratios . 2

1.1.1 Normalized Histograms for a feature 2
1.1.2 Log-likelihood ratio . 3
1.1.3 Variance Ratio . 3

1.2 Feature Selection . 3
1.2.1 Correlation criterion . 3

1.3 Covariance Matrix computation . 4
1.4 Model Update . 4

2 Results 4
2.1 PETS/S1 . 5

A Appendix: Basic Covariance Tracking 9
A.1 Introduction . 9
A.2 Features of an Image . 9
A.3 Tracking . 10

A.3.1 Method for finding the Covariance Matrix 11
A.3.2 Finding best match . 12
A.3.3 Model Update . 13

B Appendix: Covariance Matrix Computation 13

C Code Documentation 15

D Appendix: Optimization of Covariance Tracking using SIMD 20
D.1 Code Analysis . 20
D.2 Choosing data type . 20
D.3 Optimized functions and Results 20

1

1 Experiments with Covariance Tracking

Normally, all the components of a color space along with gradients are used in
covariance tracking. If we choose the best features, it is possible to reduce the
number of features and thus, gain in speed of tracking without much loss in tracking
quality. But ignoring a color component completely might lead to a major loss of
information. Hence, the linear combinations of R,G and B pixel values which give
best discrimination from the background are chosen:

F ≡ {w1R + w2G+ w3B | w∗ ∈ [−2,−1, 0, 1, 2]}

The choice of these features is done by calculating the Variance Ratio for each
combination as proposed in [1]. Experiments have been performed with following
different combinations of features:

• x̄, ȳ, R, G, B, gradient

• x̄, ȳ, H, S, V, gradient

• x̄, ȳ, 1 combination of RGB (C1), gradient

• x̄, ȳ, 2 combinations of RGB (C1, C2), gradient

Here, x̄, ȳ denote normalized values. In this report, I have tried to show that use of
linear combinations can improve tracking speed by about 80% (1.8x) and in some
cases, it even improves the quality of tracking.

1.1 Calculation of Variance Ratios

First, variance ratio is calculated for each linear combination. It involves compu-
tation of:

• Normalized histograms for object and background

• Log-likelihood ratios from the object and background histograms

• Variance ratio from log-likelihood and histograms

1.1.1 Normalized Histograms for a feature

The minimum and maximum value of the feature in the object as well as the
background is determined. All values of the feature are then normalized to fit in
the range of 0 - (Resolution). Histograms of length equal to the resolution are
created for object and background. For the experiments, resolution of 32 (or 5
bits) has been used.

2

1.1.2 Log-likelihood ratio

Let p, q denote the histograms corresponding to object and background respec-
tively. The log likelihood ratio of a feature value i is given by

L(i) = log
max{p(i), δ}
max{q(i), δ}

(1)

where δ is a small value that prevents dividing by zero or taking the log of zero.

1.1.3 Variance Ratio

Using the equality var(x) = Ex2 − (Ex)2, we compute the variance of L(i) with
respect to object class distribution p(i) as

var(L; p) = E[L2(i)]− (E[L(i)])2 (2)

=
∑
i

p(i)L2(i)−

[∑
i

p(i)L(i)

]2
(3)

and similarly for background class distribution q(i). The variance ratio of the log
likelihood function can now be defined as

V arianceRatio(L; p, q) ≡ var(L; (p+ q)/2)

var(L; p) + var(L; q)

Please refer to [1] for more details.

1.2 Feature Selection

After the variance ratios are calculated, the linear combinations with highest vari-
ance ratios are selected for tracking. For covariance tracking, one has to be careful
to choose features such that they are linearly independent. Otherwise, the covari-
ance matrix will become singular. Also, there is no difference in the tracking if the
number of linear combinations used is equal to the number of components in the
color space. The reason for this is explained later. Due to these factors, we choose
at most 2 best linear combinations for the experiment.

1.2.1 Correlation criterion

When choosing more than one combinations, it might be effective to choose com-
binations with least correlated values. For example, consider a window in which
the ’G’ values of all pixels are very small. Since G is negligible, it is possible to get
R−B and R−B+G as the combinations with highest variance ratio as they will

3

be almost equal. But since both of these are almost equal, it might not be a good
idea to choose them for tracking. Instead another combination which has lower
correlation can be chosen in spite of lower Variance Ratio. Thus, optimization
needs to be done between higher Variance Ratio and lower Correlation criteria.
Further testing needs to be done to verify this criterion.

1.3 Covariance Matrix computation

If F0 is the old feature vector and the new feature vector F1 is only a linear
combination of the old feature vectors i.e. F1 can be expressed as W × F0 where
|W | > 0, then the new covariance matrix can be obtained from the old covariance
matrix using the relation

C1 = W × C0 ×W T (4)

The derivation of this relation is shown in Appendix B

1.4 Model Update

A technique described in [2] updates the model using Lie Algebra by combining
information from last few models. As a result, if tracking becomes inaccurate,
contribution of previous models helps in returning back. Since the features keep
changing in our case, this technique cannot be used for model update directly.

A base feature vector is constructed which contains base RGB components in-
stead of linear combinations. So feature vector

[
x y R−G G+ 2B Ix Iy

]
will have base

[
x y R G B Ix Iy

]
. Base feature vector does not change

throughout the tracking. Covariance matrix is calculated using base feature vector
and it is updated using the Lie Algebra technique. After the new model is ob-
tained, new linear combinations are selected to account for changing background
and the new model based on the base feature vector is transformed to get the
model for actual feature vector using equation 4.

Detect background change

It is possible to detect change of background calculate the Bhattacharya dis-
tance between current background histogram and the last model’s background
histogram. If the distance is higher than a selected threshold, new model and lin-
ear combinations are calculated. Further testing needs to be done on this method.

2 Results

Following data was used to compare performance of tracking:

4

• Features used

• Tracking time for first 50 frames (T50)

• Mean distance between forward and reverse trajectories

• Montages of tracked window

Mean Distance between forward and reverse trajectories

After tracking is complete in forward direction, it is started in the reverse direction
with the initial window as the last window in forward trajectory. Mean distance
between the two trajectories is calculated using the relation:

D ≡ 1

N

N∑
frame

‖ Xf (frame)−Xr(frame) ‖ (5)

where N is the total number of frames and Xf , Xr denote the (vector) points
in forward and reverse trajectories.

In the following sections, I have shown some comparisons which show the ad-
vantage of using linear combinations.

2.1 PETS/S1

The person in this sequence is quite difficult to track as she walks in front of many
cars of various colors. Another problem is the red car as the color matches with
the object’s color.

Backward

As you can see in Figure 2, tracking is almost 1.8 times faster compared to RGB.
Also, when using RGB or HSV, tracking failed in the middle while when using
linear combination(s). Thus, use of combinations improves tracking as well as
makes it faster.

Forward

As you can see in Figure 3, tracking was successful using linear combinations while
it failed when using normal features. Thus, use of combinations improved tracking.
Also, tracking is 1.8 times faster when using combinations compared to RGB.

5

Figure 1: Initial Frame PETS/S1 Backward

6

(a) Features used: x y C1 Ix Iy
T50 = 7815 ms
Tracking complete

(b) Features used: x y R G B Ix Iy
T50 = 13789 ms
Tracking failed at frame 85

(c) Features used: x y C1 C2 Ix Iy
T50 = 9346 ms
Tracking complete

(d) Features used: x y H S V Ix Iy
T50 = 13591 ms
Tracking failed at frame 100

Figure 2: PETS/S1 Backward

7

(a) Initial Frame

(b) Features used: x y C1 Ix Iy
T50 = 6992 ms

(c) Features used: x y R G B Ix Iy
T50 = 12827 ms

Figure 3: PETS/S1 Forward

8

A Appendix: Basic Covariance Tracking

A.1 Introduction

A brief description of the tracking algorithm is as follows. At each frame, we
construct a feature image (Section A.2). For a given object region, we compute
the covariance matrix of the features as the model of the object (Section A.3.1).
In the current frame, we find the region that has the minimum covariance distance
from the model and assign it as the estimated location (Section A.3.2).

A.2 Features of an Image

We denote the observed image with I, where it might be one dimensional intensity
image or three dimensional color image, or four dimensional combination of color
and infrared images, or etc.
For a given rectangular window R ⊂ F, let {fk}k=1..n be the d-dimensional feature
vectors inside R. We construct the feature vector fk using two types of mappings;
spatial attributes that are obtained from pixel co-ordinate values, and appearance
attributes, i.e., color, gradient, infrared, etc. These features may be associated
directly to the pixel coordinates

fk = [x y I(x, y) Ix(x, y) ...].

Alternatively, they can be arranged in radially symmetric relationship

f r
k = [‖(x′, y′)‖ I(x, y) Ix(x, y) ...]

where
‖(x′, y′)‖ =

√
(x′2 + y′2), (x′, y′) = (x− x0, y − y0)

are the relative co-ordinates, and (x0, y0) are the coordinates of the window
center.

Choice of Features

For gray-scale images, the following 5 features can be used:

[x y I(x, y) Ix(x, y) Iy(x, y)]

In order to reduce computations, it is desirable to use fewer features. For color-
scale images, the following 7 features can be used:

[x y R(x, y) G(x, y) B(x, y) Gx(x, y) Gy(x, y)]

where Gx is the maximum of the gradient among the three colors in the x-direction
and Gy in the y-direction.

9

HSV color space

The number of features can be further reduced by converting the RGB color space
to HSV. Instead of three features for every color component, only one component
C is used, where C is a combination of hue, saturation and value.

C = βH + (1− β)V (6)

where

β(S) =


0, if S < S0

(S − S0)/(S1 − S0), if S0 < S < S1

1, if S > S1

Thus, the feature vector will contain only 5 elements:

[x y C Gx(x, y) Gy(x, y)]

A.3 Tracking

Covariance Matrix

We represent an M ×N rectangular region R with a d× d covariance matrix CR

of the feature points as

CR =
1

MN

MN∑
k=1

(fk − µR)(fk − µR)T (7)

where µR is the vector of the means of the corresponding features for the points
within the region R. The covariance matrix is a symmetric matrix where its di-
agonal entries represent the variance of each feature and the non-diagonal entries
represent their respective correlations. Covariance matrix of any region has the
same size, thus it enables comparing any regions without being restricted to a
constant window size. It has also an scale invariance property over the regions
in different images in case the raw features such as, image gradients and orienta-
tions, are extracted according to the to scale difference. It is possible to compute
covariance matrix from feature images in a very fast way using integral image
representation [10]. After constructing tensors of integral images corresponding to
each feature dimension and multiplication of any two feature dimensions, the co-
variance matrix of any arbitrary rectangular region can be computed independent
of the region size.

10

A.3.1 Method for finding the Covariance Matrix

In the process of locating an object in a given region in an image with a given
number of features, it is computationally expensive and inefficient to calculate the
covariance matrix directly. Typically, for every frame we compute the covariance
matrix 25 - 100 times, depending on the accuracy required. Hence, for the pur-
pose of calculating these covariance matrices, we are using the method of sum
images/integral images. This process is used to speed up the tracking process at
the cost of increasing memory usage.

Integral Images

The integral image Int(r, c) is defined for a gray scale input image I(x, y) by

Int(r, c) =
∑
x<=r

∑
y<=c

I(x, y), (8)

as the sum of all pixel values inside the rectangle bounded by the upper left
corner. Based on this data, intensity sums of any rectangle at any location in the
image can be calculated in constant time. The entries of the covariance matrix of
a region are given by

Cij =
∑
x<=n

∑
y<=m

(fi(x, y)− µi)(fj(x, y)− µj)

Hence, we can write Cij as,

Cij =
∑
x<=n

∑
y<=m

[fi(x, y)fj(x, y)− µifj(x, y)− µjfi(x, y) + µiµj]

which on simplification leads to

Cij =
∑
x<=n

∑
y<=m

fi(x, y)fj(x, y)− (mn)µiµj

Thus, we can obtain the covariance matrix by building N(N + 1)/2 integral ma-
trices Qij for each pair of feature dimensions fi and fj with i, j <= N . These
product integral matrices Qij are calculated by

Qij(r, c) =
∑
x<=r

∑
y<=c

fi(x, y)fj(x, y). (9)

11

Advantages of using this method

The main benefit of this method is that the covariance matrix of any region can
be obtained in constant time once the integral matrices are calculated. Although
a large number of calculations are required to compute the integral matrices, the
overall number of computations for tracking is much less compared to when co-
variance matrices were obtained directly.

A.3.2 Finding best match

To obtain the most similar region to the given object, we need to compute distances
between the covariance matrices corresponding to the target object window and
the candidate regions. Supposing no features in the feature vector would be exactly
identical, which states the covariance matrices are positive definite, it is possible
apply the distance measure proposed by Frstner [7]. The distance metric uses
the sum of the squared logarithms of the generalized eigenvalues to compute the
dissimilarity between covariance matrices as

ρ(Ci, Cj) =

√√√√ d∑
k=1

ln2λk(Ci, Cj) (10)

where λk(Ci, Cj) are the generalized eigenvalues of Ci and Cj, computed from

λkCixk − Cjxk = 0 k = 1 . . . d (11)

and xk are the generalized eigenvectors. The distance measure ρ satisfies the
metric axioms, positivity, symmetry, triangle inequality, for positive definite sym-
metric matrices. At each frame we search the whole image to find the region which
has the smallest distance from the current object model. The best matching region
determines the location of the object in the current frame.

Calculating generalised eigenvalues of a pair of matrices

In order to find the best match, we need to compute the generalized eigenvalues
for any two covariance matrices. Since covariance matrices are positive definite,
we use cholesky decomposition.

λkCixk − Cjxk = 0

λkCixk = Cjxk

Now, since Ci is positive semi-definite,Ci can be decomposed as,

Ci = LLT

12

where L is a lower triangular matrix.

λk(LLT)xk = Cjxk[
L−1Cj(L

−1)T
]

(LTxk) = λ(LTxk)

Thus, the problem of finding generalized eigenvalues is reduced to the standard
eigenvalue problem Ax = λx where A = [L−1Cj(L

−1)T]. Since A is symmetric in
this case, eigenvalues are obtained quickly.

A.3.3 Model Update

The covariance matrix is updated when the similarity measure is lesser than a
threshhold. Note that smaller the similarity measure, more is the actual similarity.
The threshhold is obtained from the average of similarity measures until the current
frame. Once the model is updated, it is used for atleast 10 frames.
As per requirements, more sophisticated methods based on Lie Algebra [15] or
Riemannian Manifolds[16] for updating models may be used.

B Appendix: Covariance Matrix Computation

Consider two linear combinations:

Ii = αiR + βiG+ γiB

Ij = αjR + βjG+ γjB

Covariance of these two features is given by

σ2
Ii,Ij

=
1

N

∑
(Ii − µIi)(Ij − µIj)

=
1

N

∑
IiIj − µIi

1

N

∑
Ij − µIj

1

N

∑
Ii +

1

N

∑
µIiµIj

=
1

N

∑
(IiIj − µIiµIj)

Substituting Ii and Ij, we get

IiIj − µIiµIj = (αiR + βiG+ γiB)(αjR + βjG+ γjB)

−(αiR̄ + βiḠ+ γiB̄)(αjR̄ + βjḠ+ γjB̄)

= αi

(
αj(R

2 − R̄2) + βj(RG− R̄Ḡ) + γj(RB − R̄B̄)
)

+βi
(
αj(GR− ḠR̄) + βj(G

2 − Ḡ2) + γj(GB − ḠB̄)
)

+γi
(
αj(BR− B̄R̄) + βj(BG− B̄Ḡ) + γj(B

2 − B̄2)
)

13

Now,

1

N

∑
(R2 − R̄2) = σ2

R2

1

N

∑
(RG− R̄Ḡ) = σ2

RG

...

Therefore,

σ2
Ii,Ij

= αi

(
αjσ

2
R + βjσ

2
RG + γjσ

2
RB

)
+βi

(
αjσ

2
RG + βjσ

2
G + γjσ

2
GB

)
+γi

(
αjσ

2
RB + βjσ

2
GB + γjσ

2
B

)
In matrix notation, we can write the equation asσ2

i σ2
ij . . .

σ2
ij σ2

j . . .
.

 =

αi βi γi
αj βj γj
.

 σ2
R σ2

RG σ2
RB

σ2
RG σ2

G σ2
GB

σ2
RB σ2

GB σ2
B

αi αj . . .
βi βj . . .
γi γj . . .


Now consider covariance of features x and Ii.

σ2
x,Ii

=
1

N

∑
(x− x̄)(Ii − µIi)

=
1

N

∑
xIi − µIi

1

N

∑
x− x̄ 1

N

∑
Ii +

1

N

∑
x̄µIi

=
1

N

∑
(xIi − x̄µIi)

=
1

N

∑(
x(αiR + βiG+ γiB)− x̄(αiR̄ + βiḠ+ γiB̄)

)
=

1

N

∑(
αi(xR− x̄R̄) + βi(xG− x̄Ḡ) + γi(xB − x̄B̄)

)
= αiσ

2
x,R + βiσ

2
x,G + γiσ

2
x,B

In matrix notation, we can write the equation as

 σ2
x σ2

xy σ2
xi

σ2
xy σ2

y σ2
yi

σ2
xi σ2

yi σ2
i

 =

1 0 0 0 0
0 1 0 0 0
0 0 αi βi γi



σ2
x σ2

xy σ2
xR σ2

xG σ2
xB

σ2
xy σ2

y σ2
yR σ2

yG σ2
yB

σ2
xR σ2

yR σ2
R σ2

RG σ2
RB

σ2
xG σ2

yG σ2
RG σ2

G σ2
GB

σ2
xB σ2

yB σ2
RB σ2

GB σ2
B




1 0 0
0 1 0
0 0 αi

0 0 βi
0 0 γi



14

Thus combining both equations, we get
σ2
x σ2

xy σ2
xi σ2

xj σ2
xk

σ2
xy σ2

y σ2
yi σ2

yj σ2
yk

σ2
xi σ2

yi σ2
i σ2

ij σ2
ik

σ2
xj σ2

yj σ2
ij σ2

j σ2
jk

σ2
xk σ2

yk σ2
ik σ2

jk σ2
k

 = W ×


σ2
x σ2

xy σ2
xR σ2

xG σ2
xB

σ2
xy σ2

y σ2
yR σ2

yG σ2
yB

σ2
xR σ2

yR σ2
R σ2

RG σ2
RB

σ2
xG σ2

yG σ2
RG σ2

G σ2
GB

σ2
xB σ2

yB σ2
RB σ2

GB σ2
B

×W T

where

W =


1 0 0 0 0
0 1 0 0 0
0 0 αi βi γi
0 0 αj βj γj
0 0 αk βk γk

 and

x
y
Ii
Ij
Ik

 = W ×


x
y
R
G
B


Thus, the new covariance matrix can be expressed in terms of the old covariance
matrix.

C Code Documentation

Before describing the acceleration, I would like to describe the code. I have used
OpenCV library for handling images and Numerical Recipes 3 (nr3) for matrix
operations. Covariance Tracking involves following parts:

1. Extracting data from IplImage structure (covariance.cpp)

2. Calculating integral images (covariance.cpp)

3. Calculating covariance matrix (covariance.cpp)

4. Searching for the matching window (tracking.cpp)

5. Calculating similarity between two covariance matrices (matrixops.cpp)

6. Model Update (main.cpp, matrixops.cpp)

7. Selection of best linear combinations (selectfeatures.cpp)

This section merely describes the use of different functions of the code. It does
not describe the working. Please refer to Appendix A to read about the methods.

Figures 4, 5, 6 show the flowchart of the tracking algorithm. Corresponding
functions in the code are also mentioned besides the blocks.

Figure 7 shows the organizational chart of the code. It shows which functions
belong to which module and also displays them as per level. Higher level functions
call the lower level ones.

15

Figure 4: Highest level algorithm of covariance tracking

16

Figure 5: Algorithm for searching the matching window

17

Figure 6: Algorithm for updating the model

18

Figure 7: Organizational Chart of the code

19

D Appendix: Optimization of Covariance Track-

ing using SIMD

D.1 Code Analysis

Analysis of the code using profilers indicated that the following operations are
performed for maximum time:

• Matrix multiplication

• Calculation of eigen values

The use of SIMD acceleration is most effective when dealing with large matrices.
And in my case, the maximum size of the matrix is 7×7. Hence it might not be
very effective to accelerate these parts. Also, since external libraries were used for
these operations, it was difficult to accelerate.

Each function was accelerated separately. Hence the results are shown for indi-
vidual functions instead of entire code. Results in this report have been obtained
using the inbuilt profiler in Microsoft Visual Studio 2010. The original and the
accelerated code was run simultaneously for many iterations and ratio of their
execution times is recorded for different window sizes.

D.2 Choosing data type

32-bit single precision real vectors of size 128-bits (m128) have been used through-
out the accelerated code. IplImage contains pixel values in 8 bit unsigned char
data-type. It would have been very effective as well as easier to use 8-bit unsigned
int vectors instead of 32-bit float vectors. However, for further calculations, real
values are required. (I tried running the code by using 32-bit integers instead of
floats. But, the results were not so good.)

D.3 Optimized functions and Results

FeatureVectors

This function extracts image data from OpenCV’s IplImage structure. Data in
IplImage is stored in the form of array of structures. It has to be converted into
3 dimensional array of 32-bit float vectors (structure of arrays). Since IplImage
contains pixel values in 8-bit unsigned int format, the data is first loaded into 8-bit
integer vectors. As IplImage contains data in array of structures [b1g1r1b2g2r2 . . .],
data swizzling is performed.

20

One vector can store 16 values, therefore 48 values i.e. (pixel data of 16 points)
has to be transformed into 3 vectors containing r, g and b values in one iteration.

Afterwards, each of the three 8-bit vectors is converted into four 32-bit float
vectors. It is evident from the results below that this conversion requires much
more time than extraction of data.

n acceleration real acceleration 8bit int
16 3.8 14.0
32 5.8 28.4
64 8.0 56.0
128 9.7 105.1

Sum Matrices

This function calculates two integral images described in Section A.3.1.

n acceleration
16 31.0
32 37.3
64 46.0
128 47.0

Variance Ratio

This function calculates the variance ratios for all the linear combinations of R,
G, B. Calculation of variance ratio involves computing the histograms. Hence,
this function has not been accelerated completely. Parts other than histogram
computation have been accelerated. Hence the acceleration is not so effective.

n acceleration
16 1.69
32 1.60
64 1.61
128 1.90

References

[1] Collins RT, Liu Y, Leordeanu M. 2005 IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, Volume 27 Issue 10, October 2005, Pages 1631-
1643

[2] Fatih Porikli, Oncel Tuzel. 2006 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR)

21

