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Abstract

Mobile robots carry a limited amount of energy. As a result the run time of a robot is limited.
In order to improve the run time, energy conservation is essential in mobile robot navigation.
The objective of path planning is to determine the optimal trajectory connecting a source point
to the destination point which satisfies the constraints of the environment. The goal of this
project is to formulate a strategy to reach a destination point by consuming minimum possible
energy.

Most methods perform path planning in two stages: waypoints planning and trajectory
planning. Waypoints planning involves finding a path consisting of discrete points from source
to destination while avoiding obstacles. Trajectory planning involves determining a continuous
smooth path between each consecutive pair of waypoints. Because energy consumption depends
on the linear and angular velocity profiles of the generated trajectory, the algorithms are compu-
tationally expensive. As velocity profiles are unknown during waypoints planning, it is difficult
to optimize energy consumption during waypoints planning. This dissertation addresses the fol-
lowing questions: Question 1: Can the expensive algorithms be simplified in order to reduce the
computational complexity while still retaining the energy consumption optimality? Question 2:
Can an energy consumption criteria which considers the turns in the path be used at the way-
points planning stage to generate waypoints which will lead to minimum energy consumption?
Question 3: Which aspect among waypoints planning and trajectory planning has more impact
on energy consumption?

A new method for energy efficient trajectory planning using Dubins path having linear
time complexity with respect to the number of waypoints has been proposed. Although it does
guarantee positive energy savings, the average energy savings are 14.8% compared to an existing
trajectory planner which uses Bézier curves. Conventional waypoints planning algorithms such
as A* fail to generate optimum results when used with cost functions involving turns. An Edge
based search approach has been proposed which considers edges as the nodes during search. Edge
based A* and Edge based Theta* methods which are the enhanced versions of A* and Theta*
algorithms have been proposed. The proposed Edge based A* and Edge based Theta* methods
provide average energy savings of 20.8% and 29.7% compared to their conventional counterparts.
The comparison of different methods proposed has shown that waypoints planning has a greater
impact on energy savings compared to trajectory planning.
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Chapter 1

Introduction

Robot navigation is the robot’s ability to reach desired target locations in its environment.
Navigation is essential for any task which has to be performed at a specific location in the
environment. Mobile robots have several applications such as remote exploration of unreachable
areas, fetching objects etc. The navigation itself can either be manual, for example human
controlled or it can be autonomous in which the robot reaches the target location on its own.
Autonomous navigation consists of planning motion of the robot on a path. The path may or
may not be known a priori. When the path is unknown, the autonomous navigation needs to
solve the problems of path planning as well as motion planning. The goal of the project is to
develop a path planning strategy to reach the navigaton goal with minimum energy consumption.

Path Planning

The objective of path planning is to determine the trajectory which the robot follows to reach
the goal. The path planning techniques depend on whether the environment is known or not. In
case of unknown environment, the robot detects obstacles by processing sensor data. Common
techniques which are used for path planning include potential functions, A* search, Dijkstra’s
algorithm, Belman-Ford algorithm. In the potential functions method, a navigation function is
designed such that there is a global minima at the goal. The goal is reached by following the
negative gradient of the function. The other techniques are search based techniques which are
used for finding the least cost path in a weighted graph.

1.1 Motivation

Mobile robots require a portable source of energy. Batteries are very commonly used. As the
energy from a battery is limited, the run time of the robot in one battery charge is limited to a
few hours. Table 1.1 shows a survey of robots and their respective run times. Using a battery
with higher capacity also adds to the weight of the robot which in turn results in higher power
consumption. As a result, in order to increase the run time of robots, it is essential to reduce
the power consumption of the robot.

A major part of the total energy consumption in a mobile robot occurs at the motors for
navigating the robot. Most methods in literature target at minimizing distance or time during
path planning. However, the shortest path need not be the most energy efficient path. For
example, traversing a short path with many turns could consume more energy than a straight
longer path. Also, the motors have different efficiency at different speeds. Considering these
during motion planning will help in reducing the energy consumption for the navigation task.
This project focuses on the task of reducing energy consumption in navigation for a given robot.
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Robot Name Weight Payload Voltage Battery Capacity Uptime
kg kg V Ah h

Amigo Bot 3.6 1 3.3/5/12 2.1 2 - 3
Fire Bird V 1.3 - 9.6 2.1 2
Fire Bird XI 15 10 11.1 6 × 4 4 - 5
Pioneer 3-DX 9 17 12 7.2 × 3 8 - 10
Neobotix MP-500 70 50 24 38 10

Table 1.1: Specifications of robots [4, 5]

Apart from improving the robot’s run time, there are several advantages of modeling the
energy consumption of a robot. For example, given a navigation target, if the estimated energy
requirement for performing the task exceeds the available energy, the robot can navigate to the
docking station, charge its battery till the required level and then complete the pending task.

1.2 Problem Formulation and Assumptions

The project considers path planning for a differential wheeled robot in a known environment.
The frictional coefficient of the ground at each point is known. The objective is to compute a path
for reachable target location using minimum energy or declare that the target is unreachable. In
particular, the robot must detect the unreachable target condition in finite time. It is assumed
that the robot does not gain energy by braking and energy gets dissipated in the form of heat
when the wheel speed decreases.

The next chapter reviews different methodologies from literature which target similar prob-
lems. It explains the gaps in existing methods and gives an overview of the methods proposed
in this report.
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Chapter 2

Literature Survey

This chapter describes existing techniques from literature in the domain of energy optimal
planning for robots.

Wang et al. [1] have considered a problem in which robots are powered by batteries which
can be charged at a docking station. The staying-alive and energy-optimal path planning has
been addressed by determining the optimum order of way-points aiming toward minimizing the
energy consumption. Figures 2.1a and 2.1b show the result of the work.

(a) Path without staying alive consideration [1]

(b) Path with staying alive consideration [1]

Figure 2.1: Results from Wang et al. [1]
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Sun and Reif [6] have worked on the problem of determining energy optimal path on a terrain
which minimizes energy losses due to friction also considering overturn dangers at different slopes
by defining impermissible travel directions at each point on the terrain.

Ooi and Schindelhauer [7] have worked on energy optimal path planning for a single robot.
This robot establishes wireless communication with a radio base station. An approximate algo-
rithm has been developed to find energy optimal path minimizing the energy consumption for
mobility and the energy consumption for communication which increases with the transmission
distance.

Distance traveled by a robot has direct impact on the energy consumption. Mei et al. [8] have
proposed a method for energy efficient robot exploration. Energy consumption has been reduced
by reducing repeated coverage. Plonski et al. [9] have discussed the problem of energy optimal
path planning in case of solar powered robots. Solar maps built using the sensor information
are used to maximize the battery life of the robot.

Barili et al. [10] have worked on energy saving motion strategies for an autonomous mobile
robot in environments like civil buildings which contain unpredictable obstacles. The strategy
aims to minimize the change in velocity. Chitsaz et al. [11] have worked on determining optimum
paths with minimum wheel rotation for differential drive vehicles. The optimum path may not be
a shortest distance path because shortest distance path does not imply that minimum distance
covered by the wheels.

Determination of energy optimum path based on planning requires an energy consumption
model. Morales et al. [12] have developed a model for power consumption of skid-steer tracked
robots. Power losses due to dynamic friction and the power losses at motor drivers have been
considered in the model. Mei et al. [13] have proposed an energy efficient motion planning
technique using a relationship of power consumption of motors with their speeds. The energy
consumption for acceleration and turns at different velocities is compared for different routes.

Tokekar et al. [2] have worked on the problem of determining velocity profiles for car-like
robots in order to minimize the energy consumption for travelling on a given path. The method
considers the energy consumed by the DC motors. The model considers the energy required
to overcome internal and load friction, the energy dissipated in the resistive winding and the
mechanical power output at the shaft. The energy consumption of a DC motor depends on the
angular velocity and the acceleration. An optimization is performed to determine the velocity
profile which minimizes the energy consumption. Figure 2.2 shows the comparison of optimal
and suboptimal velocity profiles.

Figure 2.2: Optimal and suboptimal velocity profiles with respect to energy consumption [2]

Energy consumption of a mobile robot depends on the linear and angular velocity profiles of
the trajectory. The energy computations involve second derivatives of the trajectory co-ordinates
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with respect to time. Liu and Sun [3] have proposed a method for energy optimal path planning
which involves a model for formulating energy consumption of a wheeled robot for kinetic energy
transformation and overcoming friction. The waypoints are determined using A* search with an
energy based cost function involving ground resistance coefficients. The energy model has been
used to determine the optimal parameters for the trajectory formed using Bézier curves passing
through the waypoints, which minimize energy consumption.

Figure 2.3: Path generation based on (a) minimal energy, (b) minimum distance, (c) larger
distance from obstacles [3]

2.1 Research Questions

Unlike path length which only depends on the position of the path, energy consumption is a
complex criteria which depends on the position of the path as well as the velocity and acceleration
profiles at each point on the path. As a result, the methods for optimizing energy tend to be
expensive in terms of computation. As robots need to compute the trajectories repeatedly, use
of computationally expensive planning techniques becomes infeasible.

As there are infinitely many possibilities of paths between a source and a destination point,
most methods divide path planning into two parts: waypoints planning and trajectory planning.
In waypoints planning, the goal is to find a set of points which the robot can go through in order
to reach the destination. Obstacle avoidance is handled in waypoints planning. Once the set
of waypoints is determined, the trajectory planning is performed for each pair of consecutive
waypoints to generate smooth trajectories.

Because a trajectory provides more information compared to a list of waypoints, more ac-
curate energy consumption estimates can be computed in the trajectory planning stage. As
the waypoints are the basis for the trajectory, the choice of waypoints can greatly influence the
energy consumption. Different strategies exist in the literature for waypoints planning and tra-
jectory planning, but trajectory planning techniques are more expensive because of their wider
search space.

The waypoint selection method proposed by Liu and Sun [3] does not consider the number of
turns or any factor related to the shape of the expected trajectory while the number of possible
trajectories considered increases exponentially with the number of waypoints. The trajectory
computation is far more expensive compared to the waypoints planning.

This gives rise to a few questions:

• Can the expensive algorithms be simplified in order to reduce the computational complexity
while still retaining the energy consumption optimality? How much energy is lost for using
a simpler method? If simpler algorithm causes higher consumption, do higher computa-
tions provide savings enough to balance their energy cost?
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• Most commonly used method for searching waypoints is the A* search. The cost functions
for A* search are usually dependent on length of the path. Can this method be extended to
search using an energy consumption cost function?

• Which of the two aspects are more important from the perspective of energy saving? Better
waypoints or better trajectories? Will a computationally expensive waypoints planner with
a simple trajectory planner be more efficient than a simple waypoints planner with an
expensive trajectory planner?

2.2 Methodology

Dubins [14] solved the problem of finding the shortest curve that connects two points in the
two-dimensional Euclidean plane (i.e. x-y plane) with a constraint on the curvature of the path
and with prescribed initial and terminal tangents to the path. It is proved that the shortest
path is formed by joining curves with minimum possible radius and straight lines. Figure 2.4
shows a simple example. Because the Dubins path can be constructed with lesser parameters, a
trajectory planner using Dubins path would be less expensive than a trajectory involving more
parameters such as the Bézier curve. Chapter 3 proposes a method for planning energy efficient
trajectories using Dubins paths with different curvature constraints. The method proposed by
Liu and Sun [3] has been used as a baseline for comparing the energy consumption.

Figure 2.4: Dubins path

Chapter 4 focuses on techniques for waypoints planning. The issues with A* search from the
perspective of energy efficient path planning have been identified and a new Edge based method
has been proposed which is capable of using cost functions involving turns. The paths generated
by A* search [15] are constrained on the edges of the grid. This limitation causes the paths to
have more number of turns. Nash et al. [16] have proposed the Theta* algorithm for computing
any-angle paths, which are shorter and have lesser number turns than the paths generated by
A*. An Edge based Theta* method for generating energy efficient paths has also been proposed.

Chapter 5 summarizes the results of the proposed waypoint and trajectory planners and
performs an analysis to determine which aspect of the path has more impact on the energy
consumption.
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Chapter 3

Energy Optimal Trajectory Planning

This chapter explains the energy optimal path planning method proposed by Liu and Sun [3].
The method uses a model for computing the energy consumed by the motors of the robot. Path
planning is performed in two steps. First, a path is calculated using an A* search variant which
uses energy based constraints. Next, the smooth trajectory is determined along the path by
selecting appropriate velocity and arrival time at the waypoints such that energy consumption
is minimized. A new method for trajectory planning using Dubins Path has been proposed. The
results obtained by the proposed method have been compared with the Bézier curves method
proposed by Liu and Sun [3].

3.1 Trajectory Planning using Bézier Curves

3.1.1 Robot Model

In a differential wheeled robot, the motion is achieved using two separately driven wheels as
shown in Figure 3.1. The direction of the robot is changed by selecting different speeds for the
wheels. The wheel velocities vleft, vright are related to the linear and angular velocities of the
robot v, ω by (3.1). [

vleft
vright

]
=

[
1 −b
1 b

] [
v
ω

]
, (3.1)

where u and v are the linear and angular velocities respectively, and b is the distance between
the wheel and the midpoint of the axis connecting the two wheels. The next section describes
the energy model of the system under consideration.

3.1.2 Energy Model

The energy consumption of the motors consists of the energy required to change the kinetic
energy of the robot and the energy required to overcome the friction. Apart from the motors,
there is also a constant power consumption at the sensors, controllers and the central computing
device. If the total power consumption of all sources apart from motors is Pother, the energy
consumption is calculated as

Eother = Pother × Time. (3.2)

Kinetic Energy

This is the energy required to accelerate or decelerate the robot. The total kinetic energy
consists of linear and rotational components. If v(t) and ω(t) are the linear and angular velocities
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Figure 3.1: Two wheeled differential drive robot [3]

respectively expressed as functions of time t, kinetic energy is given by

Ekinetic =
1

2
mv(t)2 +

1

2
Iω(t)2

=

∫
t

(
d

(
1

2
mv(t)2

)
+ d

(
1

2
Iω(t)2

))
=

∫
t
(mv(t)a(t) + Iω(t)α(t)) dt,

where a(t), α(t) are the linear and angular accelerations respectively expressed as functions of
time and m, I are the mass and moment of inertia respectively. Generally, the transformation of
kinetic energy to electric energy is not efficient. Hence, it is assumed that energy is dissipated
in the form of heat during deceleration when v(t)a(t) < 0 or ω(t)α(t) < 0. Thus, the energy
consumed by the robot is expressed as

Ekinetic =

∫
t
(mmax{v(t)a(t), 0}+ I max{ω(t)α(t), 0}) dt. (3.3)

Energy to overcome friction

The energy required to overcome traction resistance which is due to the rolling friction of the
two wheels is also provided by the motors. The power consumption of the two wheels is modeled
as [

Pleft

Pright

]
= µmg

[
|vleft|
|vright|

]
,

where µ is the friction co-efficient and g is the acceleration due to gravity.
From (3.1), we have [

Pleft

Pright

]
= µmg

[
|v(t) + bω(t)|
|v(t)− bω(t)|

]
.
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Total energy consumption due to traction resistance is given by

Eres =

∫
t
µmg(|v(t) + bω(t)|+ |v(t)− bω(t)|)dt

= 2µmg

∫
t
max{|v(t)|, |bω(t)|}dt.

Therefore, the energy consumption of the motor is

Emotor =

∫
t
(mmax{v(t)a(t), 0}+ I max{ω(t)α(t), 0}+ 2µmgmax{|v(t)|, |bω(t)|}) dt. (3.4)

The next section describes the calculation of the energy optimal path using this energy
model.

3.1.3 Determining Minimum Energy Path

The energy optimal path is calculated by introducing an energy based constraint in the cost
function of A* search algorithm [15]. The environment is represented as a grid of cells. A cell
can be either free or occupied with obstacles. Each cell is a node for the A* search. The search
starts with the starting node. The order in which the nodes are searched depends on the cost
function, which for node k is given by

f(k) = g(k) + h(k),

where g(k) is the cost of the path from starting node to node k and h(k) is the heuristic estimate
of the cost of path from node k to goal node. As the nodes are explored in the increasing order
of f(k), when the goal is reached, it is known that the path to goal has the minimum possible
value of f(k). In this method, f(k) is chosen to be proportional to energy consumption along
the path. Hence, minimizing f(k) minimizes energy consumption.

The cost g(k) is computed as the sum of the cost to reach previous node g(k−1) and the cost
to reach from g(k − 1) to g(k). Because the robot velocity is not known during path planning,
the kinetic energy component is not included in the cost.

g(k) = g(k − 1) + 2µk−1,kmgsk−1,k,

where muk−1,k is the friction co-efficient and sk−1,k is the distance between nodes k−1 and k. In
order to avoid paths which are too close to obstacles, a penalty factor ρ(k) ∈ [0, 1] is introduced
to the cost function given by

g(k) = g(k − 1) + 2µk−1,kmg
sk−1,k
ρ(k)

, (3.5)

where ρ(k) is defined as

ρ(k) =


1 dobs > Dsafe,
dobs−b
Dsafe−b b < dobs ≤ Dsafe,

0 dobs ≤ b,

where dobs is the distance to the nearest obstacle, Dsafe is the safe distance beyond which no
penalty is required and b is the minimum clearance required for the vehicle.

The next section explains the computation of an energy optimal smooth trajectory based on
the path obtained in the A* search.
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3.1.4 Determining Minimum Energy Trajectory

The trajectory is computed as a series of connected Bézier curves. Bézier curve is a smooth
cubic parametric curve. A series of waypoints is chosen from the path obtained from the A*
search. The parameters for the curves are determined from the positions and orientations of the
waypoints such that energy consumption along the complete trajectory is minimized.

Waypoint Selection

Waypoints are selected in an iterative process. Initially, the start and the goal and the knee
points on the generated path are selected as waypoints. If any two neighbouring waypoints are
sufficiently close, they are combined while a new waypoint is inserted if the path segment is
extremely long.

Determining Curve Parameters

The position of a waypoint Wi is denoted by qi = [Xi, Yi, θi]
T . The trajectory based on Bézier

curve between waypoints Wi−1 and Wi is represented as

x(u) = (1− u)3Xi−1 + 3u(1− u)2Xai + 3u2(1− u)Xbi + u3Xi

y(u) = (1− u)3Yi−1 + 3u(1− u)2Yai + 3u2(1− u)Ybi + u3Yi,

where (x(u), y(u)) denote a point on the trajectory expressed as a function of u ∈ [0, 1] which
is an intermediate variable proportional to time and Xai, Xbi, Yai, Ybi are the parameters to be
determined. As u changes from 0 to 1, (x(u), y(u)) changes continuously from Wi−1 to Wi. If Ti
denotes the time of arrival at waypoint Wi, u is expressed as a function of time t by ui = t−Ti−1

Ti−Ti−1
.

t = Ti−1 ⇔ ui = 0⇔ (x(ui), y(ui)) = (Xi−1, Yi−1)

t = Ti ⇔ ui = 1⇔ (x(ui), y(ui)) = (Xi, Yi).

Considering orientation constraints at the waypoints, we have

dx(ui)

dt

∣∣∣∣
t=Ti−1

=
3(Xai −Xi−1)

Ti − Ti−1
= Vi−1 cos θi−1

dy(ui)

dt

∣∣∣∣
t=Ti−1

=
3(Yai − Yi−1)
Ti − Ti−1

= Vi−1 sin θi−1

dx(ui)

dt

∣∣∣∣
t=Ti

=
3(Xi −Xbi)

Ti − Ti−1
= Vi cos θi (3.6)

dy(ui)

dt

∣∣∣∣
t=Ti

=
3(Yi − Ybi)
Ti − Ti−1

= Vi sin θi,

where Vi denotes the robot velocity at waypoint Wi. Equation (3.6) is rearranged to obtain the
relations

Xai = Xi−1 +
1

3
(Ti − Ti−1)Vi−1 cos θi−1

Yai = Yi−1 +
1

3
(Ti − Ti−1)Vi−1 sin θi−1

Xbi = Xi −
1

3
(Ti − Ti−1)Vi cos θi (3.7)

Ybi = Yi −
1

3
(Ti − Ti−1)Vi sin θi.

Thus, knowing velocities and arrival times at the waypoints, the parameters for the Bézier
curves are calculated.
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Computing Energy Consumption

Based on the energy model (3.4), calculating energy consumption requires knowing linear &
angular velocities as well as linear & angular accelerations at each point of time in the trajectory.
From x(ui), y(ui), the linear velocity is derived as

v(ui) =

((
dx(ui)

dt

∣∣∣∣
t

)2

+

(
dy(ui)

dt

∣∣∣∣
t

)2
) 1

2

. (3.8)

The curvature of the trajectory δ(ui) is derived as

δ(ui) =

d2y(ui)
du2

i

dx(ui)
dui
− d2x(ui)

du2
i

dy(ui)
dui((

dx(ui)
dui

)2
+
(
dy(ui)
dui

)2) 3
2

. (3.9)

Angular velocity ω(ui) is calculated as the product of curvature and linear velocities.

ω(ui) = δ(ui)v(ui). (3.10)

The linear and angular accelerations can be calculated by differentiating linear and angular
velocities. Thus, we have v(ui), ω(ui), a(ui), α(ui) expressed in terms of Vi, Ti, Vi−1, Ti−1.
Now, the motor energy consumption to reach from waypoint Wi−1 to Wi is calculated as

Ei−1,i,motor =

∫ t=Ti

t=Ti−1

(mmax{v(ui)a(ui), 0}+ I max{ω(ui)α(ui), 0}

+2µmgmax{|v(ui)|, |bω(ui)|}) dt. (3.11)

Minimizing Energy Consumption

Let V and T by the sets of Vi and Ti respectively for all waypoints. The total energy consumption
depends on V and T. The values for V and T that result in minimum energy consumption are
determined by solving the unconstrained optimization problem

minimize
V,T

(
PotherTN +

N−1∑
i=0

Ei−1,i (Vi−1, Ti−1, Vi, Ti)

)
.

The next section describes the limitations and the challenges involved in the implementation
of this method.

3.1.5 Challenges

The approach consists of an energy model, an energy based cost function for A* search and
an optimization problem for determining the parameters of the trajectory composed of several
Bézier curves. The challenges faced in implementing this method and its limitations are discussed
in this section.

Computationally Expensive

In trajectory planning, the search space increases exponentially with waypoints. If we denote
the number of waypoints by nw, the size of linear velocitity search space by nv and the size of
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time intervals search space by nt, the number of possible trajectories Tn is

Tn = nnw
v nnw−1

t

=
1

nt
(nvnt)

nw .

If we consider 3 different velocities, 3 different time intervals and 10 waypoints, then number of
possible trajectories is approximately 1.1× 109.

Inappropriate choice of decision variables

The decision variables for the optimization problem are the velocity Vi and arrival time Ti
at all waypoints. The method has framed the optimization problem such that Vi and Ti are
independent of each other. Arrival times as decision variables can take an extremely wide range
of values. It is very difficult to form the search space for arrival times that would include the
optimal configuration.

Energy Model Accuracy

The model considers that when acceleration is in the opposite direction of velocity i.e. when
kinetic energy decreases, energy is lost in the form of heat. This assumption should be applied
to the individual wheels instead of applying to the entire vehicle. Consider the case when the
robot is moving on a circular trajectory such that v > bω, ω > 0. Therefore, the wheel velocities
are given by

vleft,0 = v − bω
vright,0 = v + bω.

At the end of the circular trajectory, the robot follows a straight trajectory. After the transition,
the linear velocity is v while the angular velocity becomes zero. Wheel velocities at this stage
would be equal to v. As per the model proposed by Liu, the energy consumption to perform this
transition should be zero because the angular acceleration is opposite to the angular velocity(
dω
dt ω < 0

)
. However, the left wheel speed increases by an amount of bω and hence, it would

require some amount of energy. This energy need not be converted into kinetic energy. It
could be dissipated directly in the form of heat as overall, the kinetic energy of the robot has
decreased. This situation does not occur during linear acceleration as both wheel velocities
increase or decrease simultaneously.

Sequential Optimization

During path planning by A* search, the energy based cost function does not consider complete
energy. It considers only the component required for overcoming the resistance. Because of this,
the overall motion planning is biased towards reducing this energy component. The method first
minimizes this component of energy consumption, then minimizes the component required for
changing kinetic energy. The sequential optimization does not guarantee optimum results. For
example, it is possible that a straight trajectory through a region with higher resistance can be
more optimal than a trajectory with many turns through a region with less resistance.

These limitations motivate the need for developing better energy optimal path planning
techniques. The next section discusses some of the possible improvements which can overcome
these limitations.
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(a) CSC trajectory (b) CCC trajectory

Figure 3.2: Dubins path examples

3.1.6 Possible Improvements

Even though the choice of Vi does not impose any constraints on Ti, choosing a value Vi does
give some rough idea about the optimal Ti because the end points of the trajectory segment are
fixed and known. For example, if it is known that two waypoints Wi−1 and Wi are 1m apart,
then for Vi−1 = Vi = 0.5m/s, choosing time interval of 10s would mean that the vehicle would
have to slowdown and then accelerate back to 0.5m/s. Thus, the initial kinetic energy is lost
due to deceleration and more energy is required to accelerate. As a result, in most cases, this
choice of time interval would give inefficient results. This information can be used to reduce the
optimization search space and also to improve the accuracy of the solution by using variable
arrival time search space depending on the chosen velocity. Instead of applying the energy
balance on the entire robot, it can be applied on individual wheels. This model will be more
accurate as the energy balance would also consider the kinematics of the robot.

The method discussed in this chapter computed the trajectory between two waypoints as
a Bézier curve. The next section describes a new method in which the trajectory is computed
as a Dubins path [14]. A Dubins path 1 consists of three parts, two of which are circular arcs
while the third part can be a straight line or a circular arc. Because the kinetic energy of the
robot changes at only finite number of points in case of Dubins path, it has several advantages
compared to Bézier curve.

3.2 Trajectory Planning using Dubins path

In 1957, Dubins [14] proved that the shortest trajectory with an upper bound on curvature and
with fixed orientation at endpoints consists of circular arcs of maximum radius and straight
lines. Figure 3.2 shows examples of Dubins path. An additional constraint is that the trajectory
cannot reverse its direction at any point or the vehicle can move only in the forward direction.

3.2.1 Types of paths

There are two categories of paths: CCC (Curve-Curve-Curve) and CSC (Curve-Straight-Curve)
as shown in Fig. 3.2, depending on whether the path is a combination of 3 curves or 2 curves

1The path in Dubins path is actually a type of trajectory and should not be confused with the type of path
which is generated by the A* search
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and a straight line respectively. Further each curve corresponds to either a left turn L or a right
turn R. Thus, we have six possible types of trajectories.

T ∈ { LRL,RLR,LSL,LSR,RSL,RSR } (3.12)

The first two types in the above equation belong to the CCC category while the last four belong
to the CSC category.

3.2.2 Computing Dubins path

Determining the path consists of determining the optimal choice between the six combinations
in (3.12). The process of computing Dubins path is explained in Appendix A.

3.2.3 Minimizing Energy Consumption

This section proposes a method for determining the energy optimal trajectory through a given
sets of waypoints. The proposed method uses an approach similar to the one discussed in
Section 3.1. An energy model is formulated for computing the energy consumption of the tra-
jectory. An optimization problem is framed with trajectory parameters as the decision variables
and energy consumption as the cost function.

3.2.4 Constant Linear Velocity Condition

If the linear velocity of the robot is increased, its kinetic en- ergy increases, resulting in higher
energy consumption. If the linear velocity of the robot is decreased, the total time for reaching
the goal increases. As energy consumption by other devices is proportional to time, the total
energy consumption increases. Thus, changing the velocity leads to a higher energy consumption.
Hence, the proposed method considers trajectories with a constant linear velocity.

Now, the energy consumption of the robot depends on the angular acceleration. Considering
the Dubins path, each segment of the trajectory is either a circular arc or a straight line. Thus,
the angular velocity can have only three possible values.

ω(t) =


−ω0 on left circle

0 on straight line

ω0 on right circle

, (3.13)

where ω0 = v/r0, where v is the linear velocity and r0 is the minimum turning radius.

3.2.5 Energy Components

This method considers energy consumption by the motors and other devices similar to the
model discussed in section 3.1.2. The power consumption by other devices is considered as
constant. The motor energy consumption consists of two components. One component is the
energy required for changing the kinetic energy of the robot and other is the energy required
for overcoming the ground resistance. The first component depends on the linear and angular
velocity profiles of the planned trajectory while the second component depends on the length of
the trajectory.

The kinetic energy of the robot at any point of time is given by

KE(t) =
1

2
mv(t)2 +

1

2
I ω(t)2, (3.14)
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where m and I are the mass and moment of inertia respectively of the robot. Now, the energy
consumption would be equal to the increase in kinetic energy. When kinetic energy decreases,
it is assumed that it is completely dissipated as heat and energy consumption is zero.

The energy required to overcome ground resistance is calculated as

Pres(t) = µmg L0, (3.15)

where L0 is the path length.

3.2.6 Energy Calculation

As the linear velocity is considered constant (Section 3.2.4), a change in kinetic energy occurs
only when the angular velocity changes. But, from (3.13), the angular velocity can have only
three values. Hence, the energy consumption is non-zero for following transitions:

{ 0→ +ω0 , 0→ −ω0 , ±ω0 → ∓ω0 }.
For the first two cases, it is clear that the energy consumption will be equal to 1

2Iω
2
0. For the

third case, the transition can be broken into two parts: ±ω0 → 0 → ∓ω0. In the first part, as
the kinetic energy is decreasing, the energy consumption is zero. In the second part, the energy
consumption is equal to the change in energy which is equal to 1

2Iω
2
0.

The energy consumption also depends on the angular velocity transition at the way-point.
The initial angular velocity at the way-point is equal to the angular velocity based on the
trajectory planned between this and previous way-points. Thus, if the previous trajectory is
RSL, the initial angular velocity is −ω0. If the current trajectory is LSL, then the change in
kinetic energy at the starting point is 1

2Iω
2
0 which is added to the energy consumption. On the

other hand, if the initial angular velocity is ω0, then the kinetic energy does not change at the
starting point. While planning trajectory between way-points Wi−1 and Wi, the initial angular
velocity i.e. angular velocity at Wi−1 would be equal to the endpoint angular velocity of the
trajectory between previous pair of way-points Wi−2,Wi−1. Thus the transition from a XXL
to RXX trajectory or from XXR to LXX requires energy 1

2Iω
2
0 where X denotes any type of

segment.
Thus, the kinetic energy component of motor energy consumption is expressed as

Ek = Einitial + Etrajectory

=


1

2
Iω2

0 XXL→ RXX

1

2
Iω2

0 XXR→ LXX

0 otherwise

+



1

2
Iω2

0 LSL

1

2
Iω2

0 LSR

1

2
Iω2

0 RSL

1

2
Iω2

0 RSR

Iω2
0 LRL

Iω2
0 RLR

(3.16)

The energy consumption for overcoming friction, Ef is calculated from the path length using
(3.15). Determining the path length has been explained in Appendix A.

As the linear velocity is constant, the time for reaching the goal is proportional to the length
of the path. Thus, energy consumption by other devices is calculated by

Eother = Pother × L/v, (3.17)

where v is the linear velocity, L is the length of the path and Pother is the power consumption
by other devices.
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3.2.7 Determining optimum trajectory

The kinetic energy Ek decreases as turning radii r increases since angular velocity ω is inversely
proportional to turning radii r. On the other hand, the friction energy Ef consumption increases
as turning radii r increases since there is an increase in the path length when turning radius r is
more. As turning radius r approaches to zero, the trajectory approaches towards a straight line
between start and goal. An optimum value of turning radius r is determined which results in
minimum total energy consumption considering lower and upper bounds for the turning radii.
These bounds are given as follows:

Let rmin denote the lower bound on the value of turning radius r. The rmin is the minimum
turning radius of the robot at linear velocity v. Dubins path for r = rmin is calculated. Let
Tmin be the time consumption for the calculated trajectory.

The upper bound for the circle radii for a Dubins trajectory type D is determined by solving
the critical conditions for existence of D type of Dubins trajectory. For example, for an RSR
type of trajectory, the critical condition occurs when the two circles touch each other internally.
If radius of first circle is ri, then the upper bound on the radius of second circle is given by

rmax = −
−2ri(xi − xi+1) sin θi + 2ri(yi − yi+1) cos θi

+ (xi − xi+1)
2 + (yi − yi+1)

2

2(ri − (yi − yi+1) cos θi+1

+ (xi − xi+1) sin θi+1 − cos(θi − θi+1))

, (3.18)

where (xi, yi, θi), (xi+1, yi+1, θi+1) are the configurations at way-points Wi and Wi+1 respectively.
A negative value of the expression in (3.18) implies that the critical condition never exists. In
this case, a global maximum turning radius is used.

The length of the trajectory is determined from the turning radius and initial & final con-
figurations. However, the length would be discontinuous as the trajectory type changes at the
critical values of turning radius r. Therefore, the length calculation is broken into parts such
that each part is continuous. As the relation between length and radius is different for different
types of categories, the length function for a Dubins trajectory type D is described by (3.19).

Li = LD(qi, qi+1, ri) ∀ i = 0, · · · , N, (3.19)

where qi denotes the configuration (xi, yi, θi) at way-point Wi, q0 and qN represent source and
target configurations respectively and ri is the turning radius under consideration at way-point
Wi. Note that the function LD would have different domains of turning radius r for different
trajectory type D. Also, these domains would be mutually exclusive as one combination of
(qi, qi+1, ri) corresponds to a unique D. The length functions and critical values for different
trajectories along with their derivations are explained in Appendix A.

Thus, for each way-point, the optimal value of turning radius ri is calculated as

ri = arg min(Ek + (2µmg + Pother/v)LD(qi, qi+1, r)), (3.20)

where function arg min returns the argument of the function. Note that qi and qi+1 repre-
sent the known configurations of the way-points and the trajectory type D is determined from
(qi, qi+1, rmin) which results in a unique choice of the Dubins trajectory. The equation (3.20)
renders the desired radius for the Dubins path between waypoints Wi and Wi+1 that would
result in minimizing the total energy consumption.
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Figure 3.3: GUI for path planning

3.3 Results

3.3.1 Simulation

The proposed method is implemented using Gazebo with ROS in Ubuntu 12.04 64-bit. The
experimental scenario is developed that has similarity with the scenario used in Liu and Sun
[3]. The method developed in Liu and Sun [3] is also implemented to compare our results. The
energy consumption for the resultant trajectories are calculated analytically using the energy
model. Fig. 3.4a shows the path obtained using A* search in the simulation environment.

The worst case energy consumption for a given path is calculated as follows: the robot moves
on a straight line with a constant linear velocity toward a way-point. On reaching the way-point,
it halts, turns to face the next way-point with maximum angular velocity and then continues
moving toward the next way-point. Figures 3.4b and 3.4c show the energy optimal trajectories
generated using the method suggested in Liu and Sun [3] and proposed method respectively. The
simulation also provides the energy consumption profiles of the two trajectories as well as the
worst case path. We next compare the energy consumption and computation time of proposed
method with the Bézier curves method proposed by Liu and Sun [3].

3.3.2 Results

Liu and Sun [3] have calculated third order Bézier curve at a way-point for minimizing energy
along the shortest path. In this section we compare our results with the worst case and that
obtained by Bézier curve method. We have used the parameters used by Liu and Sun [3] for
computing the energy optimal trajectories. Table 3.1 lists the values of different parameters.

3.3.3 Energy Calculation

For the Béizer curves, the energy consumption is calculated by differentiating x and y co-
ordinates. The velocity is calculated from the difference in x and y co-ordinates. Angular
velocities are calculated from the second derivative of x and y co-ordinates. Linear and angular
accelerations are determined from the derivatives of linear and angular velocities respectively.
Then, the energy consumption is calculated based on the energy model discussed in Section 3.1.2.
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(a) Path obtained using A∗ search

(b) Smoothened path using Bézier curve
suggested by [3]

(c) Smoothened path using proposed
method

Figure 3.4: Trajectories

Mass 9 kg
Moment of Inertia 0.16245 kg m2

Robot radius b 0.185 m
µmin 0.051
µmax 0.1078
Pconstant 17.7 W
Minimum turning radius 0.1 m
Map resolution 80 × 60

Table 3.1: Parameter values
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(a) Results from implementation

(b) Published result [3]

Figure 3.5: Comparison of implementation results with published results
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For the Dubins path, the energy consumption is calculated from the circle radii and the type of
trajectory as described in Section 3.2.6.

3.3.4 Comparison

Computation Time

The same set of waypoints is used for trajectories computed by both the methods. Both the
methods involve optimization. The computations are proportional to the search space of opti-
mization. If rn denotes the size of radius search space and wn denotes the number of way-points,
the proposed method requires energy computation rn number of times per way-point. As the
radius computation is independent at different way-points, the method has a computation com-
plexity of O(wnrn). In energy optimal path planning method using Bézier curves, the decision
variables are the linear velocities vi and arrival times Ti at each way-point. Because the param-
eter optimization is performed globally, choice of vi, Ti is not independent of vj , Tj for i 6= j.
Hence, the computation complexity is O((vntn)wn) where vn denotes the number of different
linear velocities in the search space. The computation times for both methods on a machine
with Intel Core i7 (1.60 GHz) processor are tabulated in Table 3.2.

Bézier curves Dubins path

wn vn vt Time(s) wn rn Time(s)

3 5 5 0.24 8 100 0.04
6 5 5 2.92 75 100 0.18
7 5 5 16.32 118 1000 2.18
8 5 5 86.05

Table 3.2: Computation Times

The proposed method has very low computation time compared to the Bézier curve method
because the proposed method has linear computation complexity whereas the Bézier curve
method has exponential computation complexity.

Energy Savings

Multiple simulation results are obtained using different methods between multiple start and goal
positions. Figure 3.6 shows the proportion of cases with different energy savings.

Figure 3.6: Histogram showing frequency of energy savings obtained
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Parameters Bézier curve Proposed A∗

Etotal 245 153 452
Eke,linear 12.64 6.48 45.36
Eke,angular 151.78 65.68 327.50
Eres 31.45 30.19 29.70
Eother 49.62 50.43 49.80
vmax 1.27 1.20 1.20
ωmax 21.50 15.53 24.00
length 3.41 3.42 3.36
time 2.80 2.85 2.81

Table 3.3: Best case energy comparison

In the best case, the energy consumption of the trajectory using Dubins path is 37.8% less
than that using Bézier curves as shown in Fig. 3.7. The figure shows the A∗ trajectory using
blue color, the Bézier curve trajectory using red color and the proposed method’s trajectory
using green color. Table 3.3 tabulates the energy consumption by different methods. The worst
case of energy computation is considered for the path with sharp turns obtained by A∗. The
differential drive mobile robot stops for taking sharp turns. The table also tabulates different
energy component for different methods. The tabulated results show that the energy saving
is mainly because the proposed trajectory has lesser angular velocities at the turns, which is
indicated by the lesser kinetic energy Ek component in Table 3.3.

Figure 3.7: Best case scenario trajectory

In the worst case, the energy consumption of the trajectory obtained by the proposed method
is 5.73% more than that obtained using the Bézier curve method. This case is shown in Fig. 3.8.
The path in blue color shows the way-points. The trajectory in red color represents the energy
optimal trajectory through the way-points obtained using Bézier curves. The trajectory in green
color represents the energy optimal trajectory through the way-points obtained using Dubins
path.

Referring to Table 3.4, the comparison of different energy components shows that that the
slightly higher energy consumption of proposed method is mainly due to the increase in kinetic
energy. The maximum angular velocity of trajectory obtained by the proposed method is higher
than the maximum angular velocity of trajectory obtained by the Bézier curve method.

3.4 Conclusion

A method for determining energy optimal trajectory using Dubins curves from a given set of
waypoints in linear time complexity has been proposed in this chapter. The method minimizes
energy on the basis of an energy model which considers the motor energy consumption for

21



(a) Trajectories at a way-point (b) Zoomed version

Figure 3.8: Worst case scenario trajectory

Parameters Bézier curve Proposed A∗

Etotal 140 148 390
Eke,linear 9.07 6.48 32.40
Eke,angular 6.91 17.46 233.93
Eres 46.56 46.32 46.16
Eother 77.11 77.39 77.16
vmax 1.27 1.20 1.20
ωmax 7.07 13.89 24.00
length 5.27 5.25 5.23
time 4.36 4.37 4.36

Table 3.4: Worst case energy comparison

transforming kinetic energy and overcoming ground resistance.
Even though the method does not guarantee energy savings, the energy losses are limited

to 5.73% (worst case loss) compared to energy consumption of trajectory using Bézier curves
suggested by Liu and Sun [3]. In the best case, the method provides energy savings of up to
37.8% compared to the method by Liu and Sun [3]. The proposed method provides average
energy savings of 14.8%. Power consumption for other devices has been considered constant.
However, in reality, the power consumption of the computing device depends on the number of
computations performed. As a result, reduced computations also reduces energy consumption
which has not been accounted in our energy calculations. The actual energy savings are expected
to be greater than our conservative estimates.

In this chapter, the friction based cost function was used for selecting the waypoints. This
process can be improved by considering turns in the search cost function. The next chapter
discusses the issues in implementing this with the regular A* search and proposes Edge based
methods which yield better results.
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Chapter 4

Waypoints Planning

The previous part of this report focused on generating energy efficient trajectories from a given
set of waypoints. This part focuses on determining waypoints such that the energy required to
travel through them is minimized. Common methods use A* search based on a distance based
cost function to determine the waypoints. In order to optimize energy, in the previous chapter,
A* search with a friction based cost function was used to determine the waypoints. The friction
based cost function involved the product of friction co-efficient of the surface and the length of
path. However, energy cost highly depends on the amount of turns in the path and turns were
not optimized by the friction based cost function. When using turn based cost functions, the
conventional search approaches fail to give optimum results. An Edge based search approach
which overcomes this limitation has been proposed in this chapter. The Edge based approach
is not specific to a particular search algorithm. For analysis, the A* search has been used.

This chapter explains the problems with conventional A* search and how the Edge based
A* method solves them. Next, the Edge based approach is applied to the Theta* algorithm.
An energy cost function for use with Edge based search algorithms has been proposed. A*,
Theta* are examples of graph search algorithms. The next section provides an introduction to
the conventional A* method and explains the reason due to which it cannot be used with turn
based cost functions.

4.1 The conventional A* search approach

Consider a graph as shown in Figure 4.1. The points are connected to each other with edges.
Each edge has an associated cost. A* search algorithm can search for a path from a source point
to a destination point with minimum cost where the cost of a path is the sum of the costs of all
edges in the path. In addition to the cost for edges, the A* search also requires the heuristic
cost for each point. The heuristic is treated as an approximate cost for reaching the goal from
that point. A* search requires a heuristic to be admissible in order to produce optimum paths.
The conditions for admissible heuristics have been discussed in Appendix B.

Terminology

• xs, xd denote the source and destination point respectively.

• g(x) where x is a point, represents the cost for reaching x from xs. It is also referred as
cost of x.

• parent(x) denotes the parent of point x.
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xs

xd

x1

x2

x3

x4

x5

2

3

4
10

5

4

4

4

2

x h(x)
xs 5
x1 8
x2 2
x3 2
x4 5
x5 3
xd 0

Figure 4.1: An example search problem

• c(x1, x2) denotes the cost of connection from point x1 to x2. Thus, we have g(x) =
g(parent(x)) + c(parent(x), x).

• h(x) denotes the heuristic cost to reach from x to xd.

• neighbours(x) denotes the neighbours of point x.

• f(xp → x) stands for the cost of point x through xp, which is equal to g(xp) + c(xp, x).
Thus, when x is added to closed list, we have

g(x) = min
xi∈neighbours(x)

(f(xi → x)) (4.1)

parent(x) = arg min
xi∈neighbours(x)

(f(xi → x)) (4.2)

• d(x→ x1, x2) denotes the cost of connection from point x1 to x2 when x is the parent of
x1.

4.1.1 An Example Problem

The inputs for the algorithm consist of

• xs, xd
• c(xi, xj) for each edge xixj in the graph

• h(x) for each point x in the graph

The algorithm maintains two sets of points, called the “open set” and the “closed set”.
Initially, the closed set is empty while the open set contains the source point with zero cost.
The cost of all other points is set to ∞. The algorithm repeats the following steps until the
destination point is added to the closed set.
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(p, g(p)) x f(p→ x) g(x) parent(x) open set{(x, g(x) + h(x))} closed set

(xs, 0) x1 2 2 xs {(x1, 10)} {xs}
x2 3 3 xs {(x2, 5), (x1, 10)}
x3 4 4 xs {(x2, 5), (x3, 6), (x1, 10)}

(x2, 3) xd 7 7 x2 {(x3, 6), (xd, 7), (x1, 10)} {xs, x2}
x3 13 4 xs {(x3, 6), (xd, 7), (x1, 10)}
x4 5 5 x2 {(x3, 6), (xd, 7), (x1, 10), (x4, 10)}

(x3, 4) x5 8 8 x3 {(xd, 7), (x1, 10), (x5, 11)} {xs, x2, x3}
(xd, 7) - - - - {(x1, 10), (x5, 11)} {xs, x2, x3, xd}

Table 4.1: Solution to search problem from Figure 4.1 using A* search

• If the open set is empty, stop the iterations. This implies that path does not exist.

• Remove the point p with minimum value of g(p) +h(p) from open set and add it to closed
set.

• For each neighbour x of p that does not belong to the closed set, compute the value of
g(p) + c(p, x) i.e. f(p→ x). If f(p→ x) < g(x), set g(x) to f(p→ x) and parent(x) to p.
Add p to the open set if it has not been added already.

A point added to closed set implies that the minimum cost to reach that point from the starting
point has been found. As a result, when the destination point is added to closed set, the cost of
destination point denotes the minimum cost to reach it. The optimum path is determined by
back-tracing. Parent of the destination point will be the previous point on the optimum path.
By accessing the parent points along the chain until the starting point is found, the complete
path is traced.

Table 4.1 shows the calculations which the algorithm performs for solving the example prob-
lem shown in Figure 4.1. Note that the cost for x3 is computed twice, through parents xs and
x2. As f(x2 → x3) > f(xs → x3), the parent of x3 is set to xs. The search terminates when xd
is added to the closed set. The parent of xd is x2. Parent of x2 is xs. Thus, the obtained path
is xs → x2 → xd.

The heuristic values enable the algorithm to avoid unnecessary nodes. For example, because
of high value of h(x) for x1, its priority in open set became high because of which, the algorithm
never added it to the closed set. On the other hand, because h(x3) was lesser, the algorithm
chose to explore it. Thus, as long as the heuristic is admissible, changing the heuristic will not
affect the path generated by the algorithm. Even if all heuristic values are set to 0, the algorithm
will generate the same path, although it will have to explore additional nodes. As this chapter
focuses on determining the optimum path with turn based cost functions, heuristics have not
been discussed in the following sections.

4.1.2 Problems with turn based cost functions

In path planning problems, the map is divided into a grid of cells. Each cell is considered as a
node on the graph and neighbouring cells are connected in the node graph with the edge cost
as the cost of travelling from one cell to another.

Consider two neighbouring nodes x1 and x2. For finding shortest paths, the cost function
c(x1, x2) is chosen as the distance between x1 and x2. For distance, the cost from x1 to x2 is
independent of parent(x1). Hence, once the cost of x1 is fixed, the cost of x2 via x1 gets fixed.
During search, if g(x2) with x1 as parent is less than g(x2) with x3 as parent, the minimum cost
is stored and the corresponding parent is retained.
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However, when considering turns, the cost between a node and its parent also depends on
the parent’s parent. As a result, its possible that the parent for cost greater than the minimum
will lead to the globally optimum path. But this path is discarded because only the parent with
minimum cost is retained. The following example demonstrates this.

Referring to Figure 4.2, consider two different costs for reaching x from w1, w2. f(w1 → x)
is greater than f(w2 → x). But as w2, x and y are in straight line we have d(w1 → x, y) <
d(w2 → x, y). Consider the case where f(w1 → x) + d(w1 → x, y) > f(w2 → x) + d(w2 → x, y).
This means that the path to x through w2 has less cost than the path through w1. Hence, it is
expected that the path planning algorithm must return the path through w2. However, while
computing the cost of x, w2 as a parent would be discarded as the cost through w2 is higher
and hence, parent of x will be set to w1. This can also be seen from (4.1). Hence, the route
w2 → x → y would never be considered in normal A* search. Because of this, the resultant
path will not be optimum for a turn based criteria. In case of distance, this issue does not occur
because d(w1 → x, y) = d(w2 → x, y).

w1

w2

x y

Expression Value

g(w1) 5
g(w2) 4
c(w1, x) 1
c(w2, x) 1

d(w1 → x, y) 1
d(w2 → x, y) 3

f(w1 → x) 6
f(w2 → x) 5

Figure 4.2: Example

As a result, turn based criteria cannot be used with normal A* search. Hence, there is a need
for another approach which allows to use turn based cost functions. The Edge Based approach
proposed in the next section allows the use of turn based cost functions.

4.2 The proposed Edge based A*

The normal approach considered a point as a node. In the edge based approach, an edge is
considered as a node. This change allows A* search to obtain optimum results for turn based
cost functions. This technique has been termed as ’Edge based A*’.

Terminology

• x1x2 denotes the edge with starting point x1 and ending point x2

• ge(x1x2) denotes the cost of reaching the node x1x2 from starting node.
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• ce(x1x2, x3x4) denotes the cost of reaching the edge x3x4 from x1x2.

• he(x1x2) denotes the heuristic cost of reaching the destination from the edge x1x2.

• fe(x1x2 → x3x4) denotes the cost for reaching edge x3x4 through x1x2. Thus,

fe(x1x2 → x3x4) = ge(x1x2) + ce(x1x2 → x3x4).

Referring to example from Figure 4.2, as d(w2 → x, y) and d(w1 → x, y) have different costs.
In edge based approach, w1x and w2x are different nodes. The open set will contain both nodes.
When w1x gets popped from open set, ge(xy) = ge(w1x) + ce(w1x, xy). When w2x gets popped,
ge(w2x) + ce(w2x, xy) will be compared with previous ge(xy). The lesser cost will be set and
the corresponding edge would be set as the parent of xy. Thus, as per our example, the route
w2 → x→ y will be chosen.

Start and end nodes

In case of normal approach (point based), there is a single start node and a single end node.
When solving this problem with edge based approach, there are multiple start edges and end
edges. Edges with first point as the start point are the start edges and edges with second point
as the end point are the end edges. Thus, the search is stopped when any one of the end edges
gets popped from the open set. Figure 4.3 shows an example of start and end nodes for a 2D grid
with four point connectivity. S and D denote the source and destination points respectively.

Start Nodes

Goal nodes

S

D

Figure 4.3: Start and End Nodes

4.2.1 Proof

Claim: When edge e is popped from open set, ge(e) is equal to the minimum cost to reach e
from the starting point.

Consider the instant before edge e gets popped. As edge e is getting popped, we have

ge(e) = min
m∈O

(ge(m)), (4.3)

where O denotes the set of edges/nodes in open set. P,Q denote the starting and ending points
of edge e as shown in Figure 4.4. This proof uses the method of contradiction. Suppose, there
exists a path from an edge e1 ∈ O to Q through some edge e2 with cost less than ge(e).

ge(e2) < ge(e). (4.4)
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Open Set

P

Q

e

e1

e2

Figure 4.4: Diagram for Proof

The path till e1 is part of the path till e2 and the cost of a node cannot be negative. Hence, we
have

ge(e1) < ge(e2). (4.5)

From (4.4) and (4.5), we have
ge(e1) < ge(e).

This violates our initial condition (4.3) and hence, proves that the claim is true.
Thus, when an edge ending with the goal point gets popped from the open set, we get a path

with minimum cost.

4.2.2 Time Complexity

In the worst case, the search algorithms will explore all points or edges. Hence, the time
complexity is proportional to number of nodes. For a grid based map of size n× n, the number
of edges is 2n(n − 1) where the number of points is n2. Thus, the time complexity for edge
based approach and normal approach with respect to the grid size is O[n2]. 2n(n− 1) ≥ n2 for
n > 1. Hence, the ratio of worst case computation time of edge based approach compared to
the normal approach is given by

T (edge based)

T (normal)
= 2

(
1− 1

n

)
.

4.2.3 Comparison with A*

For comparison, the following cost function has been used.

ce(ep, e) = angle(ep, e) + 0.01 ∗ length(e),

where angle(e1, e2) denotes the magnitude of difference between directions of edges e1 and e2
and length(e) denotes the length of the edge e. Length has been added so that the algorithm
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chooses the shorter path in case there is a match. Because of the small weight to length, a path
with less turns will be given priority over a shorter path. Figure 4.5 shows a comparison of paths
generated for the above cost function using normal A* search and the proposed edge based A*
method. The heuristic function is

he(e) = 0.01 ∗ distance(e2, D),

where e2 denotes the endpoint of edge e, D denotes the destination point and distance(x, y)
denotes the distance between points x and y.

The tables 4.2 and 4.3 show the calculations performed by normal A* search and edge based
A* search respectively for the search problem shown in Figure 4.5a. Each row in the table
shows the computation of cost for the point/edge (e/x) through its parent point/edge (xp/ep).
In the notation for representing an edge, the left point denotes the starting point and the right
point denotes the ending point of the edge. Thus, (4, 3 → 3, 3) denotes the edge from (4, 3) to
(3, 3). The tables shows the order in which the algorithms explore the nodes as well as the cost
computed in that iteration.

In normal A* search, the cost for the point (3,4) is calculated through two parents: (3,3)
and (4,4). These represent the two paths: (4, 3) → (3, 3) → (3, 4) and (4, 3) → (4, 4) → (3, 4).
As both the paths have a single 90o turn and as their lengths are same, the value of g(x) is the
same. As the heuristic is only dependent on the distance to goal, the h(x) values are also same.
Because the path through (3,3) is explored first, the parent of (3,4) is set to (3,3). Because these
two paths are considered equivalent by the algorithm it chooses not to update the path when it
explores (4,4). As a result, the algorithm produces a suboptimal path.

In edge based approach, the cost for the edge (3, 4→ 2, 4) is computed through two parent
edges: (3, 3→ 3, 4) and (4, 4→ 3, 4). However, the cost of the latter option is lesser and hence
the algorithm sets (4, 4→ 3, 4) as the parent of (3, 4→ 2, 4) which is the optimum choice.

Table 4.4 shows a comparison of computation for the two approaches. The parameter ‘Nodes
explored’ denotes the number of nodes for which the algorithms computed cost. In case of
Example 3, the nodes explored by normal A* search were almost twice as compared to nodes
explored in edge based A* search. Because a suboptimal parent is set in normal A*, the algorithm
explores nodes in the incorrect direction. For example, consider the situation in example 1
(Figure 4.5a). Because the parent of (3, 4) is set as (3, 3), the cost of (3, 5) will be less than
(2, 4). Hence, the algorithm will explore in the downward direction also. In case of edge based
A*, because the parent edge is set optimally, nodes are not explored in the wrong direction
unnecessarily.

Next, we describe the edge based concept on the existing Theta* search method Nash et al.
[16].

4.3 The Theta* approach

In the above sections, the edge based approach was used with A* search. This approach can
be used with any search algorithm. This section focuses on the Theta* algorithm proposed by
Nash et al. [16] and the application of edge based approach on Theta*. The Theta* algorithm
selectively creates any-angle edges between non-adjacent points to form paths with lesser number
of turns. This feature makes it suitable for generating energy efficient paths. An enhancement
for the Theta* algorithm which improves the results for turn based cost functions has also been
proposed.

The paths in A* search are formed by connecting adjacent points. In case of Theta*, some
paths between non-adjacent points are also considered during the search. When the cost for a
node is computed through its parent, the cost is also computed through the parent’s parent.
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(a) Example 1 - Source: (4,3) Destination: (0,3)

(b) Example 2 - Source: (1,0) Destination: (0,3)

(c) Example 3 - For a larger graph

Figure 4.5: Comparison of paths generated by Normal A* search (left) and Edge based A*
search (right). Origin is on the top left corner in each grid.
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xp x f(xp → x) h(x) g(x) + h(x)

(4,3) (3,3) 0.010000 0.030000 0.040000
(4,3) (4,2) 0.010000 0.041231 0.051231
(4,3) (4,4) 0.010000 0.041231 0.051231
(3,3) (3,2) 1.590796 0.031623 1.622419
(3,3) (3,4) 1.590796 0.031623 1.622419
(4,2) (3,2) 1.590796 0.031623 1.622419
(4,4) (3,4) 1.590796 0.031623 1.622419
(3,4) (2,4) 3.171593 0.022361 3.193953
(2,4) (1,4) 3.181593 0.014142 3.195735
(1,4) (0,4) 3.191593 0.010000 3.201593
(1,4) (1,3) 4.762389 0.010000 4.772389
(0,4) (0,3) 4.772389 0.000000 4.772389
(1,3) (0,3) 6.343185 0.000000 6.343185

Table 4.2: Normal A* calculations for Example 1 (Figure 4.5a)

ep e fe(ep → e) he(e) ge(e) + he(e)

- (4,3 → 3,3) 0.010000 0.030000 0.040000
- (4,3 → 4,2) 0.010000 0.041231 0.051231
- (4,3 → 4,4) 0.010000 0.041231 0.051231

(4,3 → 3,3) (3,3 → 3,2) 1.590796 0.031623 1.622419
(4,3 → 3,3) (3,3 → 3,4) 1.590796 0.031623 1.622419
(4,3 → 4,2) (4,2 → 3,2) 1.590796 0.031623 1.622419
(4,3 → 4,4) (4,4 → 3,4) 1.590796 0.031623 1.622419
(3,3 → 3,4) (3,4 → 2,4) 3.171593 0.022361 3.193953
(3,3 → 3,4) (3,4 → 4,4) 3.171593 0.041231 3.212824
(4,4 → 3,4) (3,4 → 2,4) 1.600796 0.022361 1.623157
(4,4 → 3,4) (3,4 → 3,3) 3.171593 0.030000 3.201593
(3,3 → 3,2) (3,2 → 4,2) 3.171593 0.041231 3.212824
(4,2 → 3,2) (3,2 → 3,3) 3.171593 0.030000 3.201593
(3,4 → 2,4) (2,4 → 1,4) 1.610796 0.014142 1.624938
(3,4 → 2,4) (2,4 → 1,4) 1.610796 0.014142 1.624938
(2,4 → 1,4) (1,4 → 0,4) 1.620796 0.010000 1.630796
(1,4 → 0,4) (0,4 → 0,3) 3.201593 0.000000 3.201593
(3,4 → 3,3) (3,3 → 4,3) 4.752389 0.040000 4.792389
(3,2 → 3,3) (3,3 → 4,3) 4.752389 0.040000 4.792389

Table 4.3: Edge based A* calculations for Example 1 (Figure 4.5a)

Nodes explored Search completion time (ms)
Normal A* Edge based A* Normal A* Edge based A*

Example 1 13 19 0 0
Example 2 9 13 0 0
Example 3 2137 1056 60 30

Table 4.4: Computation comparison of Normal A* and Edge based A* methods
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(a) Normal Theta* (b) Edge based Theta*

Figure 4.6: Paths generated by Normal Theta* and Edge based Theta*

If the latter cost is lesser, the parent of the node is set to the previous parent’s parent. Thus,
the node which was originally the parent gets removed from the path. Algorithm 4.1 shows the
pseudo code for the theta star method.

The next section describes the issues with Theta* and how the proposed Edge based Theta*
algorithm solves them.

4.3.1 The proposed Edge based Theta*

The difference between A* and Theta* lies only in the UpdateNode procedure from Algo-
rithm 4.1. From the perspective of turn based cost functions, the Theta* technique also has
the limitations described in Section 4.1.2. Figure 4.6a shows an example of suboptimal path
generated by Theta*. In this example, cost for the node (2,4) through the parents (2,2) and
(4,4) are equal (Table 4.5). Hence, the parent of (2,4) is set to (2,2) which ultimately leads to
the suboptimal path.

In case of Edge based Theta*, the cost for (2, 4 → 1, 4) is lesser through the parent
(4, 3→ 4, 4) than through (2, 3→ 2, 4). As a result, the optimum path is obtained as shown in
Figure 4.6b.

4.3.2 Further enhancement on the proposed Edge based Theta*

The Theta* algorithm assumes that if a node and its parent’s parent node have line of sight, the
cost through parent’s parent will always be optimum. Referring to the example in Figure 4.6,
(3, 2 → 2, 2) is the parent of (2, 2 → 2, 3). Now, when the cost for (2, 3 → 2, 4) is computed
through (2, 2 → 2, 3), the parent of (2, 3 → 2, 4) is set as (3, 2 → 2, 2) as there is no obstacle
between (2, 2) and (2, 4). When cost of (2, 4 → 1, 4) is computed through (2, 3 → 2, 4), the
line of sight between (2, 2) and (1, 4) is checked and it returns false. However, had the parent
of (2, 3 → 2, 4) been (2, 2 → 2, 3), the line of sight check between (1, 4) and (2, 3) would have
returned true and a better path could have been obtained. Thus, in this case, having a short
path through the parent’s parent caused the resultant path to be less optimum which does
not happen in case of distance based cost function. The updated procedure for UpdateNode
in Algorithm 4.2 prevents these cases resulting in a better path. The results of this method
have been shown in Figure 4.7b. The optimum path through this method has cost 4.017701
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Algorithm 4.1 Theta* Algorithm

function ThetaStar(start, goal)
x← start . openQueue: Priority Queue that returns
while x 6= goal do . the node with minimum G(node)

for all n ∈ neighbours(x) do
if n /∈ closedSet then

UpdateNode(x, n)
end if

end for
if openQueue is empty then

return nil . Path not found
end if
x← pop from openQueue
push x to closedSet

end while
if x 6= goal then

return nil . Path not found
end if
initialize a list path add x to path
repeat

x← Parent(x)
add x to path

until x 6= start
return path

end function

procedure UpdateNode(parentnode, node)
if LineOfSight(Parent(parentnode), node) then

g ← ComputeCost(Parent(parentnode), node )
if g < G(node) then

G(node)← g
Parent(node)←Parent(parentnode)
if node /∈ openQueue then

push node to openQueue
end if

end if
else

g ← ComputeCost(parentnode, node)
if g < G(node) then

G(node)← g
Parent(node)← parentnode
if node /∈ openQueue then

push node to openQueue
end if

end if
end if

end procedure
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xp x f(xp → x) h(x) g(x) + h(x)

(4,2) (3,2) 0.010000 0.020000 0.030000
(4,2) (4,3) 0.010000 0.031623 0.041623
(4,2) (2,2) 0.020000 0.022361 0.042361
(4,2) (4,4) 0.020000 0.041231 0.061231
(2,2) (2,3) 1.600796 0.031623 1.632419
(4,4) (3,4) 1.600796 0.040000 1.640796
(2,2) (2,4) 1.610796 0.041231 1.652027
(4,4) (2,4) 1.610796 0.041231 1.652027
(2,4) (1,4) 3.191593 0.044721 3.236314
(2,4) (0,4) 3.201593 0.050000 3.251593
(0,4) (0,3) 4.782389 0.042426 4.824815
(0,4) (0,2) 4.792389 0.036056 4.828444
(0,4) (0,1) 4.802389 0.031623 4.834012
(0,4) (0,0) 4.812389 0.030000 4.842389
(0,1) (1,1) 6.383185 0.022361 6.405546
(0,0) (1,0) 6.393185 0.020000 6.413185
(0,1) (1,0) 5.601929 0.020000 5.621929
(0,1) (2,0) 5.931898 0.010000 5.941898
(0,1) (2,0) 5.931898 0.010000 5.941898
(0,1) (3,0) 6.083058 0.000000 6.083058

Table 4.5: Calculations for Theta* algorithm for example in Figure 4.6a

(Table 4.7) compared to 4.512261 for edge based Theta*.

4.4 Improvement of energy saving using Edge based approaches

The primary motivation for the Edge based approach is to enable use of cost functions which
involve turns. Energy consumption of a robot is one such cost function. The cost function is
based on the energy model discussed in Section 3.1.2. For estimating the energy consumption,
the robot is assumed to stop when there is a turn. The angular velocity during turning and
the linear velocity while travelling between waypoints are constant and are denoted by ω and
v respectively. Thus, at a turn, the cost will be equal to the sum of the energy required to
turn and the energy required to accelerate the robot. Algorithm 4.3 shows the pseudo code for
computing cost for a node.

In Chapter 3, the friction co-efficient of a point was used in the energy cost function. In
case of A*, the parent and child nodes are neighbours of each other. As a result, the average
friction co-efficient between the parent and child nodes was used. In case of Theta*, the parent
and the child nodes need not be neighbours, though the line of sight check ensures that there is
no obstacle on the line joining them. As a result, for computing the friction co-efficient, the line
joining the nodes is split into small parts and the average friction co-efficient for those parts is
used for energy cost calculation.

The next section compares the paths generated by different search methods discussed in this
report with respect to their energy saving.
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ep e fe(ep → e) he(e) ge(e) + he(e)

(4,2) (4,2 → 3,2) 0.010000 0.020000 0.030000
(4,2) (4,2 → 4,3) 0.010000 0.031623 0.041623
(4,2) (3,2 → 2,2) 0.020000 0.022361 0.042361
(4,2) (4,3 → 4,4) 0.020000 0.041231 0.061231

(3,2 → 2,2) (2,2 → 2,3) 1.600796 0.031623 1.632419
(4,3 → 4,4) (4,4 → 3,4) 1.600796 0.040000 1.640796
(3,2 → 2,2) (2,3 → 2,4) 1.610796 0.041231 1.652027
(4,3 → 4,4) (3,4 → 2,4) 1.610796 0.041231 1.652027
(2,3 → 2,4) (2,4 → 1,4) 3.191593 0.044721 3.236314
(2,3 → 2,4) (2,4 → 3,4) 3.191593 0.040000 3.231593
(4,3 → 4,4) (2,4 → 1,4) 1.620796 0.044721 1.665518
(3,4 → 2,4) (2,4 → 2,3) 3.191593 0.031623 3.223215
(4,3 → 4,4) (1,4 → 0,4) 1.630796 0.050000 1.680796
(4,3 → 4,4) (1,4 → 0,4) 1.630796 0.050000 1.680796
(1,4 → 0,4) (0,4 → 0,3) 3.211593 0.042426 3.254019
(3,4 → 2,4) (2,3 → 2,2) 3.201593 0.022361 3.223953
(2,3 → 2,2) (2,2 → 3,2) 4.782389 0.020000 4.802389
(2,3 → 2,4) (3,4 → 4,4) 3.201593 0.041231 3.242824
(3,4 → 4,4) (4,4 → 4,3) 4.782389 0.031623 4.814012
(1,4 → 0,4) (0,3 → 0,2) 3.221593 0.036056 3.257648
(1,4 → 0,4) (0,2 → 0,1) 3.231593 0.031623 3.263215
(1,4 → 0,4) (0,1 → 0,0) 3.241593 0.030000 3.271593
(0,2 → 0,1) (0,1 → 1,1) 4.812389 0.022361 4.834750
(0,1 → 0,0) (0,0 → 1,0) 4.822389 0.020000 4.842389
(2,3 → 2,2) (3,2 → 4,2) 4.792389 0.022361 4.814750
(3,4 → 4,4) (4,3 → 4,2) 4.792389 0.022361 4.814750
(0,2 → 0,1) (1,1 → 1,0) 4.031133 0.020000 4.051133
(0,2 → 0,1) (1,0 → 0,0) 3.241593 0.030000 3.271593
(0,2 → 0,1) (1,0 → 2,0) 4.361102 0.010000 4.371102
(0,2 → 0,1) (0,0 → 0,1) 6.373185 0.031623 6.404808
(0,2 → 0,1) (2,0 → 3,0) 4.512261 0.000000 4.512261

Table 4.6: Calculations for Theta* algorithm for example in Figure 4.6a
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Algorithm 4.2 Theta* Enhancement

procedure UpdateNode(parentnode, node)
g0 ← ComputeCost(parentnode, node)
if LineOfSight(node, Parent(parentnode) then

g ← ComputeCost(Parent(parentnode), node)
if g < g0 and g < G(node) then . Use this option only If cost is lesser

G(node)← g
Parent(node)←Parent(parentnode)
if node /∈ openQueue then

push node to openQueue
end if

else if g0 < G(node) then
G(node)← g0
Parent(node)← parentnode
if node /∈ openQueue then

push node to openQueue
end if

end if
else

if g0 < G(node) then
G(node)← g0
Parent(node)← parentnode
if node /∈ openQueue then

push node to openQueue
end if

end if
end if

end procedure

(a) Edge based Theta* (b) Enhanced Theta*

Figure 4.7: Paths generated by Edge based Theta* and Enhanced Theta*
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ep e fe(e→ e) he(e) ge(e) + he(e)

(4,2) (4,2 → 3,2) 0.010000 0.022361 0.032361
(4,2) (4,2 → 4,3) 0.010000 0.036056 0.046056

(4,2 → 3,2) (3,2 → 2,2) 0.020000 0.020000 0.040000
(4,2) (3,2 → 2,2) 0.020000 0.020000 0.040000

(3,2 → 2,2) (2,2 → 2,3) 1.600796 0.030000 1.630796
(4,2 → 3,2) (2,2 → 2,3) 0.809540 0.030000 0.839540
(4,2 → 4,3) (4,3 → 4,4) 0.020000 0.044721 0.064721

(4,2) (4,3 → 4,4) 0.020000 0.044721 0.064721
(4,3 → 4,4) (4,4 → 3,4) 1.600796 0.041231 1.642027
(4,2 → 4,3) (4,4 → 3,4) 0.809540 0.041231 0.850771
(2,2 → 2,3) (2,3 → 2,4) 1.604938 0.040000 1.644938
(4,4 → 3,4) (3,4 → 2,4) 1.604938 0.040000 1.644938
(2,3 → 2,4) (2,4 → 1,4) 3.185735 0.041231 3.226966
(2,2 → 2,3) (2,4 → 1,4) 0.823682 0.041231 0.864913
(2,3 → 2,4) (2,4 → 3,4) 3.185735 0.041231 3.226966
(2,2 → 2,3) (2,4 → 3,4) 2.394479 0.041231 2.435710
(2,4 → 1,4) (1,4 → 0,4) 1.619081 0.044721 1.663802
(3,4 → 2,4) (2,4 → 2,3) 3.185735 0.030000 3.215735
(4,4 → 3,4) (2,4 → 2,3) 2.394479 0.030000 2.424479
(1,4 → 0,4) (0,4 → 0,3) 3.199877 0.036056 3.235932
(2,4 → 1,4) (0,4 → 0,3) 2.408621 0.036056 2.444676
(2,4 → 2,3) (2,3 → 2,2) 3.189877 0.020000 3.209877
(2,4 → 3,4) (3,4 → 4,4) 3.189877 0.044721 3.234598
(0,4 → 0,3) (0,3 → 0,2) 3.204019 0.028284 3.232303
(2,3 → 2,2) (2,2 → 3,2) 4.770673 0.022361 4.793034
(2,4 → 2,3) (2,2 → 3,2) 3.979417 0.022361 4.001778
(0,3 → 0,2) (0,2 → 0,1) 3.214019 0.022361 3.236380
(0,4 → 0,3) (0,2 → 0,1) 3.214019 0.022361 3.236380
(3,4 → 4,4) (4,4 → 4,3) 4.770673 0.036056 4.806729
(2,4 → 3,4) (4,4 → 4,3) 3.979417 0.036056 4.015473
(0,2 → 0,1) (0,1 → 0,0) 3.224019 0.020000 3.244019
(0,3 → 0,2) (0,1 → 0,0) 3.224019 0.020000 3.244019
(0,2 → 0,1) (0,1 → 1,1) 4.794815 0.014142 4.808958
(0,3 → 0,2) (0,1 → 1,1) 4.003559 0.014142 4.017701
(0,1 → 0,0) (0,0 → 1,0) 4.804815 0.010000 4.814815
(0,2 → 0,1) (0,0 → 1,0) 4.013559 0.010000 4.023559
(2,2 → 3,2) (3,2 → 4,2) 4.774815 0.028284 4.803100
(4,4 → 4,3) (4,3 → 4,2) 4.774815 0.028284 4.803100
(0,1 → 1,1) (1,1 → 1,0) 4.798958 0.010000 4.808958
(0,3 → 0,2) (1,1 → 1,0) 3.690027 0.010000 3.700027
(1,1 → 1,0) (1,0 → 0,0) 5.734471 0.020000 5.754471
(0,3 → 0,2) (1,0 → 0,0) 3.224019 0.020000 3.244019
(1,1 → 1,0) (1,0 → 2,0) 4.807176 0.000000 4.807176
(0,3 → 0,2) (1,0 → 2,0) 4.017701 0.000000 4.017701
(1,0 → 0,0) (0,0 → 0,1) 6.375612 0.022361 6.397972
(0,3 → 0,2) (0,0 → 0,1) 3.214019 0.022361 3.236380
(0,0 → 0,1) (0,1 → 0,2) 6.365612 0.028284 6.393896
(0,3 → 0,2) (0,1 → 0,2) 6.345612 0.028284 6.373896

Table 4.7: Calculations for Enhanced Theta* algorithm for example in Figure 4.7b
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Algorithm 4.3 Energy based cost function for edge based search

Require: width: B, mass: M , Inertia: I, Non-motor Power consumption: Pother,
linear velocity: v, angular velocity: ω
function ComputeCost(parentEdge, edge)

θ ← angle(parentEdge, edge) . Direction change in [0, π]
eturn ← 0
time← 0
µ← averageFrictionBetweenEdges(parentEdge, edge)
if θ > 0 then

ef,turn ← θ ∗B ∗ µ ∗M ∗ 9.81
ek,turn ← 1

2I(ω)2 + 1
2 ∗M ∗ v2

eturn ← ef,turn + ek,turn
time← time+ (θ/ω)

end if
eres ← 2 ∗ µ ∗M ∗ 9.81 ∗ length(edge)
time← time+ length(edge)/v
eother ← Pother ∗ time
return G(parentEdge) + (eturn + eres)

end function

4.4.1 Comparison of search algorithms

The following four methods have been compared for their energy savings:

1. A* method

2. Theta* method

3. Edge based A* method

4. Edge based Theta* method

As the A* and Theta* methods do not support the turn based cost function proposed in
Algorithm 4.3, the friction based cost function from Section 3.1.3 has been used. The original
cost function involved a penalty factor ρ which caused the astar path to be away from the
obstacles. However, this would influence the optimality of the path in terms of energy and
hence, for the purpose of comparing energy profiles, the ρ factor is not used. The cost function
used for A* and Theta* is given by

c(xp, x) = 2µxp,xmg distance(xp, D),

where D is the destination point, m is the mass of the robot, g is the acceleration due to gravity.
Algorithm 4.3 is used to compute the energy profiles for the paths generated by the four

methods. The algorithms have been executed several times using random source and destination
points. The trajectories for the best case with maximum energy savings for Edge based Theta*
have been shown in Figure 4.8 and the energy profile comparison have been shown in Table 4.8.
Figure 4.10 and Table 4.9 show the same for the worst case scenario with minimum savings.
Theoretically, the worst case savings can never be greater than 0% as the algorithms will produce
exactly same paths when the source and destination lie on a straight line parallel to either axes
of the grid. The histograms in Figure 4.9 show the frequencies of energy savings for different
methods as well as their average savings.
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Figure 4.8: Maximum energy savings for Edge based Theta*

Method Savings Etotal Eke,linear Eturns Eres Eother length(m) time(s)

A* (Blue) 0% 2752 1106.08 474.37 584.60 586.65 66.21 33.14
Theta* (Green) 24% 2090 682.08 433.52 509.55 464.56 52.52 26.25
Edge A* (Purple) 42% 1598 571.47 79.29 506.47 440.39 50.21 24.88
Edge Theta* (Red) 64% 990 36.87 39.78 494.09 419.36 47.86 23.69

Table 4.8: Energy profile comparison for best case scenario in Figure 4.8 (All energy values are
in Joules and savings are calculated with respect to A*)

Method Savings Etotal Eke,linear Eturns Eres Eother length(m) time(s)

A* (Blue) 0.00% 83 0.00 0.00 48.03 34.98 4.00 1.98
Theta* (Green) 0.00% 83 0.00 0.00 48.03 34.98 4.00 1.98
Edge A* (Purple) 0.00% 83 0.00 0.00 48.03 34.98 4.00 1.98
Edge Theta* (Red) 0.00% 83 0.00 0.00 48.03 34.98 4.00 1.98

Table 4.9: Energy profile comparison for worst case scenario in Figure 4.10 (All energy values
are in Joules and savings are calculated with respect to A*)
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(a) Theta* (b) Edge based A*

(c) Edge based Theta*

Method Average savings

Theta* 11.8%
Edge A* 20.8%

Edge Theta* 45%

(d) Average Savings

Figure 4.9: Histograms showing frequency of energy savings for different methods and average
savings compared with A*
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Figure 4.10: Minimum energy savings for Edge based Theta* (All paths are identical)
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Chapter 5

Conclusions

Chapter 3 proposed a new method for generating trajectories using Dubins paths. Figure 5.1
shows the probability distribution of percentage energy savings compared to the Bézier curves
method proposed by Liu and Sun [3]. The proposed method computes energy efficient tra-
jectories in linear time complexity with respect to the number of waypoints compared to the
exponential complexity of the technique using Bézier curves.

Figure 5.1: Probability distribution of percentage energy savings using A* with Dubins path
compared to A* with Bézier curves (Average savings: 14.8%)

Chapter 4 explained why conventional A* search method results in a suboptimal path when
used with a turn based cost function. The Edge based A* and Edge based Theta* methods were
proposed to allow use of turn based cost function. The histograms in Figure 4.9 show the prob-
ability distribution of percent energy savings of Edge based A*, Edge based Theta* and Theta*
methods when compared to A* method. For the comparison in Figure 4.9, energy consumption
estimates were used as the continuous trajectories were unknown. In this chapter, these methods
are used with the proposed trajectory planners for comparing the energy consumption.

This chapter draws out conclusions through comparison of energy savings when different
combinations of waypoint planners and trajectory planners are used together.

5.1 Impact of trajectory planner

Figure 5.1 shows the comparison of Dubins trajectory planner with the Bézier curves trajectory
planner keeping the waypoints planner same (A*). Figure 5.2a shows the comparison of Edge
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based Theta* with A* keeping the trajectory planner same (Bézier curves). Thus, the first
comparison shows the effect of improving the trajectory planner, while the second comparison
shows the effect of improving the waypoints planner keeping the baseline as A* with Bézier
curves. The average savings in the first case are 14.8% while the range of savings is [-5%, 35%].
In the second case, the average savings are 32.87% and the range of savings is [5%, 65%]. The
higher averages and higher range denotes that the impact of waypoints planning is more than
trajectory planning.

5.2 Impact of waypoints planner

Edge based Theta* has two improvements over A*. Firstly, it supports cost function involving
turns and hence, uses a better energy consumption estimate. Use of Theta* supports any-angle
paths which reduces the number of turns and thus, reduces the energy consumption. Edge based
A* includes only the first improvement. Figure 5.2b shows the comparison of Edge based A*
compared to A* keeping the trajectory planner same (Bézier curves). Figure 5.2a shows the
improvement in energy savings using Edge based Theta* compared to A* for Bézier curves. The
comparison shows that the improvement in cost function has contributed more to energy savings
compared to the any-angle path functionality.

On the other hand, Figure 5.2c demonstrates the impact of any-angle paths on energy savings
by comparing Edge based Theta* with Edge based A*. The average savings in this case are
6.52% with a range of [0,25%]. Average savings for improvement in cost function through the use
of Edge based approach are 26.44% with a range of [0,55%]. This confirms the conclusion that
the cost function for searches have more impact on energy savings than the search algorithm.

5.3 Conclusions

The research questions posed in Chapter 2 can now be answered based on the results.

• Can the expensive algorithms be simplified in order to reduce the computational complexity
while still retaining the energy consumption optimality?
The proposed trajectory planner using Dubins paths has linear time complexity with
respect to number of waypoints. The existing method which makes use of Bézier curves has
exponential complexity. Apart from being less expensive computationally, the proposed
method also provides higher savings.

• Can an energy consumption criteria which considers the turns in the path be used at
the waypoints planning stage to generate waypoints which will lead to minimum energy
consumption?
The existing method for waypoints planning A* search results in suboptimal paths with a
turn based cost function. The Edge based waypoints planning method has been proposed
that generates optimum results using turn based cost function. The application of this
method for energy optimal path planning has provided average energy savings of 32.87%.

• Which aspect among waypoints planning and trajectory planning has more impact on en-
ergy consumption? The analysis discussed in Sections 5.1 and 5.2 concludes that way-
points planning has more impact on energy savings compared to trajectory planning.
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(a) Edge based Theta* compared to A* for Bézier curves
(Average savings: 32.87%)

(b) Edge based A* compared to A* for Bézier curves (Av-
erage savings: 26.44%)

(c) Edge based Theta* compared to Edge based A* for
Bézier curves (Average savings: 6.52%)

Figure 5.2: Energy Savings comparison using different combinations of proposed methods
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Appendix A

Calculating Dubins path

Consider the Dubins path computation between two waypoints q1, q2 as shown in Figure A.1.

• d(p1, p2) denotes the distance between two points p1, p2.

• r0 is the radius of the two circles.

• c1 and c2 are the centers of the two circles touching q1 and q2 respectively.

• Dc12 is the distance between the two circle centers c1 and c2.

• θ1 and θ2 are the directions of the waypoints q1 and q2 respectively.

• θr1 and θr2 are the central angles corresponding to the circular arcs in the two circles which
are part of the path.

• Left indicates counterclockwise direction (+ve) and right indicates clockwise direction(-
ve).

• ∆L(θ1, θ2) denotes the amount of rotation in left direction required to reach from θ1 to θ2.
The amount of rotation will always lie in the range [0, 2π).

• ∆R(θ1, θ2) is similar to ∆L(θ1, θ2) except that it denotes the difference in the right direc-
tion.

θ1

θ2

θr1

θr2

c1

c2

Dc12

r0

θt

r0

q1

q2

Figure A.1: An RSR trajectory
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Thus, referring to figure A.1, we get

θr1 = ∆R(θ1, θt) and θr2 = ∆L(θ2, θt).

A.1 Common Calculations

Determining circle centers

The direction of the vector from the starting point towards the center of the circle will depend
on the turn direction.

θ1c =

{
θ1 − π/2 left turn,

θ1 + π/2 right turn,

∴ c1 = (x1 + r1 cos θ1c , y1 + r1 sin θ1c).

Similarly, c2 can also be calculated.

Vector between circle centers

Dc12 =
√

(c1x − c2x)2 + (c1y − c2y)2

∴ Dc12 =
√

(r1 cos θ1c − r2 cos θ2c + x1 − x2)2 + (r1 sin θ1c − r2 sin θ2c + y1 − y2)2.

The direction of the vector from c1 to c2 can be calculated as

θc12 = arctan

(
c2y − c1y
c2x − c1x

)
.

A.2 Determining Path Length & Critical Values

Critical values are those values of the circle radii at which either the length of the trajectory
is discontinuous or the type of the shortest trajectory changes. Determining critical values is
essential to determine the search space for the optimization problem.

A.2.1 RSR

Consider the radii of the circles at c1, c2 to be r1, r2 as shown in figure A.2. For tangent to exist,
a required condition is Dc12 > |r1 − r2| where Dc12 is the distance between two centers.
Then, we have the following equations.

Lt =
√
D2

c12 − (r2 − r1)2

∴ α = arccos

(√
D2

c12 − (r1 − r2)2
Dc12

)
.

Calculation of θt depends on which among r1, r2 is greater. If θc12 is the direction of the vector
from c1 to c2, we get

θt =

{
θc12 + α r1 < r2,

θc12 − α r1 > r2.

46



θ1

θ2

θr1

θr2

c1

c2

Dc12

r1

θt

r2

q1

q2

Lt

α

θc12

Figure A.2: RSR trajectory for different radii

The length of the trajectory can then be calculated as

LRSR =
√
D2

c12 − (r2 − r1)2 + r1 ∆R(θ1, θt) + r2 ∆R(θt, θ2). (A.1)

For the simplified case in which the circles are both equal to r0, we get the path length as

LRSR = Dc12 + r0 (∆R(θ1, θt) + ∆R(θt, θ2)) .

Critical Value

There can be two kinds of critical values for an RSR trajectory. In the first kind, the type of
trajectory after increasing the radius beyond the critical value is still an RSR trajectory while
in the second kind, RSR trajectory does not exist.

When the radii become large, the value of the term (∆R(θ1, θt) + ∆R(θt, θ2)) becomes greater
than 2π.

(∆R(θ1, θt) + ∆R(θt, θ2)) = ∆R(θ1, θ2) + 2π

This additional 2π causes the discontinuity. This is illustrated in figure A.3. At the critical
value of r1, q2 lies on circle 1. Thus, the first critical condition is that (∆R(θ1, θt) + ∆R(θt, θ2))
should be less than 2π which is equivalent to

∆R(θ1, θ2) > ∆R(θ1, θt). (A.2)

For the second critical condition, keeping r1 constant, the upper bound for r2 is determined,
beyond which the two circles do not have a common tangent. This occurs when one circle is
completely inside another circle. At the critical value, the circles would be touching each other,
such that one circle is inside the other circle. Let rc denote this critical value.

∴ d(c1, c2) = |r1 − r2|
∴ (y1 − y2 − r1 cos θ1 + r2 cos θ2)

2 + (x1 − x2 + r1 sin θ1 − r2 sin θ2)
2 = (r1 − r2)2.

On expanding the above equation, we get

rc = −(x1 − x2)2 + (y1 − y2)2 + 2r1 sin(t1)(x1 − x2)− 2r1 cos(t1)(y1 − y2)
2(r1 + cos t2(y1 − y2)− sin t2(x1 − x2)− cos(t1 − t2))

. (A.3)
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θr1

θr2

θt

θ1
θ2

∆R(θ1, θ2)

Figure A.3: RSR trajectory for high r0
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θ1

θr2

θr1

c2

c1

Dc12
r2

θt

r1

q2

q1

Lt

α

θc12

θ2

Figure A.4: LSL trajectory

The value of this expression can be negative. A negative value indicates that the circles always
have a common tangent and hence, the upper bound does not exist.

A.2.2 LSL

The LSL trajectory is equivalent to a reverse RSR trajectory. Figure A.4 shows an LSL trajec-
tory. The differences are in calculation of θt and LLSL.

Lt =
√
D2

c12 − (r2 − r1)2

∴ α = arccos

(√
D2

c12 − (r1 − r2)2
Dc12

)

θt =

{
θc12 + α r1 > r2,

θc12 − α r1 < r2,

LLSL =
√
D2

c12 − (r2 − r1)2 + r1 ∆L(θ1, θt) + r2 ∆L(θt, θ2). (A.4)

Critical Values

The first critical condition for an LSL path at which the trajectory type remains same is

∆L(θ1, θ2) > ∆L(θ1, θt). (A.5)

With r1 constant, the upper bound on r2 such that an LSL trajectory exists is

rc = −(x1 − x2)2 + (y1 − y2)2 − 2r1 sin(t1)(x1 − x2) + 2r1 cos(t1)(y1 − y2)
2(r1 − cos t2(y1 − y2) + sin t2(x1 − x2)− cos(t1 − t2))

. (A.6)
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θt

q1
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Lt

θc12

Dc12

q2

Figure A.5: RSL trajectory

A negative value of rc implies that there is no upper bound.

A.2.3 RSL

An RSL trajectory can exist only when Dc12 > r1 + r2. The tangent is given by

Lt =
√
D2

c12 − (r1 + r2)2,

θt = θc12 − α,

where

α = arcsin

(
r1 + r2
Dc12

)
.

The path length is given by

LRSL =
√
D2

c12 − (r1 + r2)2 + r1 ∆R(θ1, θt) + r2 ∆L(θt, θ2). (A.7)

Critical Value

Unlike RSR or LSL trajectories, RSL has only the second kind of critical value after which
an RSL trajectory cannot exist. At this critical value, the two circles will touch each other
externally.

∴ d(c1, c2) = r1 + r2

With r1 constant, the upper bound on r2 is given by

rc =
(x1 − x2)2 + (y1 − y2)2 + 2r1 sin(t1)(x1 − x2) + 2r1 cos(t1)(y1 − y2)

2(r1 + cos t2(y1 − y2)− sin t2(x1 − x2) + cos(t1 − t2))
. (A.8)

A negative value of rc implies that there is no upper bound.
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Figure A.6: LSR trajectory

A.2.4 LSR

An LSR path has been shown in figure A.6. The equations for LSR path are as follows:

Lt =
√
D2

c12 − (r1 + r2)2

α = arcsin

(
r1 + r2
Dc12

)
θt = θc12 + α

∴ LLSR =
√
D2

c12 − (r1 + r2)2 + r1 ∆L(θ1, θt) + r2 ∆R(θt, θ2). (A.9)

Critical Value

With r1 constant, the upper bound of the range of r2 for which an LSR trajectory exists is given
by

rc =
(x1 − x2)2 + (y1 − y2)2 − 2r1 sin(t1)(x1 − x2)− 2r1 cos(t1)(y1 − y2)

2(r1 − cos t2(y1 − y2) + sin t2(x1 − x2) + cos(t1 − t2))
. (A.10)
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Figure A.7: RLR trajectory
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A.2.5 RLR

Let the radius of the middle circle be rm. The lengths of the sides of the triangle c1cmc2 are
known. Applying the law of cosines, we get

α1 = arccos

(
D2

c12 + (r1 + rm)2 − (r2 + rm)2

Dc12(r1 + rm)

)
,

α2 = arccos

(
D2

c12 + (r2 + rm)2 − (r1 + rm)2

Dc12(r2 + rm)

)
.

Now,

θt1 = θc12 − α1 − π/2
θt2 = θc12 + α2 + π/2.

Therefore, the length is given by

LRLR = r1 ∆R(θ1, θt1) + rm ∆L(θt1, θt2) + r2 ∆R(θt2, θ2). (A.11)

A.2.6 LRL

An LRL trajectory shown in figure A.8 is equivalent to a reverse RLR trajectory. The equations
are as follows

α1 = arccos

(
D2

c12 + (r1 + rm)2 − (r2 + rm)2

Dc12(r1 + rm)

)
,

α2 = arccos

(
D2

c12 + (r2 + rm)2 − (r1 + rm)2

Dc12(r2 + rm)

)
,

θt1 = θc12 + α1 + π/2,

θt2 = θc12 − α2 − π/2,

LLRL = r1 ∆L(θ1, θt1) + rm ∆R(θt1, θt2) + r2 ∆L(θt2, θ2). (A.12)
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Figure A.8: LRL trajectory
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Appendix B

Admissible Heuristics for A* search

The required conditions for a heuristic h(x) to be admissible are as follows:

• h(xd) = 0, where xd is the destination point

• h(x) is always less than the actual cost of reaching destination from x

Figure B.1 shows examples of admissible heuristics.

S

D

x

h(x) =
√
10

g(x) =
√
8 + 1

(a) Euclidian Distance

S

D

x

h(x) = 4

g(x) = 7

(b) Manhattan Distance

Figure B.1: Admissible Heuristics for length of path as the cost function
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